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Abstract Accurate segmentation of reliable brain tumor detection is essential for early diagnosis and 

treatment, which helps to increase patient survival rates. However, the inherent variability in tumor shape, 

size, and intensity across different MRI modalities makes automated segmentation a challenging task. 

Traditional deep learning approaches, such as U-Net and its variants, provide robust results but often 

struggle with modality-specific inconsistencies and generalization across diverse datasets. This research 

presented AMIN-CNN, an adaptive multimodal invariant normalization incorporating a novel 3D 

convolutional neural network to improve brain tumors segmentation across various MRI technologies. 

Through adaptive normalization, AMIN-CNN covers modality-specific differences more effectively than 

Basic CNN and U-Net, leading to improved integration of multimodal MRI input data. The model maintains 

strong learning performance with minimal overfitting beyond epoch 50. Regularization techniques can 

reduce this. AMIN-CNN stands out with the best Dice Score (about 0.92 WT, 0.87 ET, and 0.89 TC), Precision 

(0.3), accuracy of 93.2 % and can decrease false positives. The lower Sensitivity in AMIN-CNN results in it 

finding the smaller but more correct tumor regions, making it more precise. Compared with traditional 

methods, AMIN-CNN demonstrates a competitive or better segmentation result and maintains 

computational efficiency. The model has demonstrated strong independence, with a Hausdorff Distance of 

20, compared to 100 for other models. According to these test results, AMIN-CNN is the most effective and 

clinically correct method among the different architectures, mainly due to its high precision and ability to 

measure tumors with accuracy. 

Keywords: Brain Tumor Segmentation, Adaptive Multimodal Invariant Normalization (AMIN), Convolutional 

Neural Network (CNN), Multimodal MRI, U-Net, BraTS Dataset. 

1. Introduction  

A brain tumor is an abnormal growth of tissue within the 
brain that can cause problems with parts of the nervous 
system. It is important to know that these types of 
tumors may be benign  or malignant, and their risk 
depends on both their ability to spread and their 
location  [1]. As the brain is responsible for breathing, 
movement, thinking, and senses, even a modest tumor 
can result in dangerous or severe health issues. These 
tumors are dangerous as they tend to increase in size, 
usually without noticeable symptoms. Tumors are often 
found after they have become advanced and caused 
permanent harm due to their potential to impair critical 
brain functions and rapidly deteriorate patient health 
[2]. Early and accurate detection of brain tumors is 
essential for effective treatment planning and improving 
patient outcomes. Magnetic Resonance Imaging is 
commonly used to detect brain tumors and generate 
detailed pictures using T1, T2, FLAIR, and T1 contrast-

enhancement modalities [28]. However, manual 
segmentation of tumors from these images is time-
consuming, subjective, and prone to variability, making 
automated, reliable segmentation methods highly 
desirable [3].  

   Developments in computational methods have  
enabled deep learning  to assist with medical image 
analysis by quickly and automatically extracting and 
organizing important features. Several studies have 
found that convolutional neural networks (CNNs), when 
integrated with deep learning frameworks, significantly 
enhance the performance in detection, classification, 
and segmentation of medical images [4]. Among these, 
U-Net [5] is a crucial choice for biomedical 
segmentation because it uses an encoder-decoder 
setup and skip connections that effectively capturing 
both global context and fine-grained details. Boosting 
performance has led to the  development of a number 
of U-Net variations.  Due to its nested and dense skip 
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pathways, UNet++  achieves more accurate detection 
of the boundaries between different tissues [6]. 
Additionally, DeepLab uses atrous convolutions and 
Conditional Random Fields (CRFs) to successfully 
capture objects  across different scales and accurately 
define their boundaries [7]. Moreover, architectures like 
DenseNet enable features to be reused multiple times 
and errors to be corrected across layers, resulting in 
enhanced segmentation strength and fewer network 
parameters [8]. 

   MRI scans with mixed modalities can be difficult to 
segment due to how the tumors look and their varying 
intensity. It is often  challenging to identify the 
subregions within tumors,  such as, enhancing tumor, 
edema, and necrotic core, using different MRI 
sequences such as T1, T2, FLAIR, and T1ce [11, 12]. 
Traditional CNNs often struggle to overcome these 
differences in data, resulting in a decline in the system's 
ability to generalize or segment images effectively. 
Therefore, more attention is being given to adaptive 
approaches for normalization. They  ensure that 
features in different modalities match up, so that the 
learned representation is not affected by the type of 
input during training. Similarly, using image-specific 
fine-tuning [10] and combining different normalization 
methods in H-DenseUNet has  improved the results of 
image segmentation by  addressing changes between 
images and enhancing the learning from the overall 
context. To address these issues, we came up with the 
Adaptive Multimodal Invariant Normalization CNN 
(AMIN-CNN) structure. The framework proposes a 
dedicated way to normalize features  within each 
image, making it possible to  more accurately identify 
tumors and avoid false reports. Researchers tested the 
proposed method on the BraTS2020 dataset. They 
compared it with Basic CNN and U-Net, revealing that 
it performs better in identifying tumors with a higher 
significance to medical practitioners. 

2. Related Work 

Recent advancements in deep learning have 
significantly improved the segmentation of medical 
images, particularly in studies of brain tumors. While 
manual segmentation of brain tumors from MRI scans 
takes a lot of time and is not always reliable, it prompts 
the search for more effective automated methods. A 
large number of medical image analysis tasks use 
CNNs due to their ability to identify different features as 
they process raw data [4]. [5] Introduced U-Net, and it 
is often referred to as a core model thanks to its 
encoder-decoder design and skip connections that help 
the model save detail at each spatial level. By using 
nested and dense skip connections, UNet++ adds a 
layer to the original UNet, helping it learns better at 
different scales and boosting the segmentation 
accuracy [6]. Yet, it is not easy to identify various areas 
of a brain tumor in multimodal MRI since the intensities 

and details found in each modality can differ. Most 
models struggle to handle these imaging types 
effectively, and current normalization techniques lack 
the flexibility required to bring different MRI features to 
a uniform level. Hence, coming up with a way that is 
independent of imaging method and flexible is 
important for better tumor segmentation accuracy. 
   Other models based on deep learning [32, 33] have 
greatly improved the process of medical image 
segmentation. It utilizes atrous (dilated) convolutions 
and Conditional Random Fields (CRFs) to enhance 
understanding of complex images by capturing 
information across multiple scales [7]. In addition, 
DenseNet  establishes an architecture where each 
layer is connected to every other layer. As a result , 
gradient flow  becomes more efficient, features are 
used more often, and the model ends up with fewer 
parameters, keeping it accurate and  efficiency [9]. 
nnU-Net greatly improved how models can be 
automatically designed. It automatically adjusts the 
preprocessing, model organization, and training routine 
according to the features of each medical dataset . 
There is no longer a need to  fine-tune the model 
manually, and it has been proven to work well in various 
medical segmentation assignments [8]. Their results on 
benchmark studies  such as the BraTS challenge, 
further confirm that they work well in different and 
complicated medical imaging scenarios [29, 34]. 
   In brain tumor segmentation, DeepMedic, a 3D CNN, 
is one of the recommended models, as it is designed to 
identify different areas of a tumor in three-dimensional 
scans by using different information scales and context 
from the surrounding tissues [14]. The 3D U-Net  
extends the classical 2D U-Net into the world of 
volumetric images, which makes it possible to capture 
more structural details from MRI scans and raise the 
accuracy of segmenting the tissues [15]. 
   Despite the progress, separating brain tumors from 
the different types of MRI scans is still a difficult task. 
While every modality provides information on the tumor 
(for example, edema, core, or enhancing areas), the 
differences in light features, strong contrast, and 
imaging resolution between them make it difficult to use 
features from all modalities. It is now possible to fuse 
multi-modal information using approaches such as 
modality concatenation and multi-stream CNN models. 
However, they regularly  encounter issues due to 
limitations in certain aspects of their operation, 
including repeated features and parameter usage, 
which reduce accuracy when the systems are 
generalized or segmented [17, 16]. To fix up these 
mixed-in-mode issues, researchers have been 
focusing more on using normalization methods 
recently. Traditional  methods for normalization, such 
as Batch Normalization, Instance Normalization, and 
Layer Normalization, help stabilize the network during 
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training and accelerate its learning speed. However, 
these methods usually work for any kind of MRI image,  
however, they  do not  take into account that each type 
of MRI looks different, which makes them less helpful 
when trying to combine information from different kinds 
of MRI scans. Consequently, researchers have  begun 
to use methods that make the feature numbers of 
different types of scans line up with each other more 
easily. MIND (Modality Independent Neighborhood 
Descriptor) was specifically designed for multi-modal 
image registration and captures areas of the image not 
based on intensity differences [18]. Another useful 
method is Adaptive Instance Normalization (AdaIN), 
which automatically  adjusts the mean and variance of 
different feature maps, helping better transfer styles 
and make feature maps from different sources more 
similar [19][31]. These approaches help  develop better 
ways to split up MRI data, so that the models can 
handle the different and changing patterns that come 
up when medical images are taken in more than one 
way. These improvements aside, most existing models 
have a hard time managing inconsistencies between 
modalities or within the same modality, resulting in 
somewhat poor performance in segmenting brain MR 
images with multiple modalities. Alternations in the 
quality of different modalities make it challenging to 
align and relate their key features.  
   Researchers have suggested using a  combination of 
different architectural concepts to address the 
mentioned issues. In particular, H-DenseUNet uses 
densely connected blocks in the U-Net design to 
improve the accuracy of segmenting complex organs 
like the liver tumors [13]. Similarly, another class of U-
Net models, attention-based U-Nets, use adaptive 
feature weights to improve segmentation accuracy and  
enable the network pay more attention to the relevant 
structures [20, 22]. This suggests that architectures for 
multimodal processing should seamlessly integrate 
various types of information and be adaptable to any 
data format. This is why AMIN-CNN proposes a new 
normalization layer that brings features from different 
modalities into harmony, and also uses reliable fusion 
methods.  Due to this method, the brain tumor 
segmentation in multimodal MRI will be more precise 
and can be validly used on future data. 
   The preprocessing is the initial stage in which MRI 
volumes are taken through an organized pipeline to 
improve data quality and make them consistent across 

subjects. The multimodal input, 𝑋 ∈ 𝑅(𝐻𝑋𝑊𝑋𝐶𝑋4), 

consists of four MRI modalities, namely T1, T1ce, T2, 
and FLAIR, each providing complementary anatomical 
information in a complementary fashion. Preprocessing 
steps of note include  correcting the bias field where 
voxel intensities are modified by a predicted bias field 
B(x) via the N4ITK algorithm to make tissue intensities 
uniform. This is then followed by z-score normalization 

to bring the voxel intensities of the different modalities 
to a common range, thereby  diminishing the inter-scan 
variability. Skull stripping is then used to remove non-
brain structures such as the skull and scalp, which 
reduces the computational complexity and removes 
irrelevant features. The subsequent image registration 
is done to align all the modalities with each other 
through affine transformations 𝑇(𝑥) = 𝐴𝑥 + 𝑏 so, here 

anatomical correspondence between the sequences. 
These steps enhance the signal-to-noise ratio by 
combining and compensating acquisition-related 
variations and permit voxel-wise multimodal analysis, 
which is critical to performing robust tumor 
segmentation. Data augmentation: random rotations, 
flipping, elastic deformations, and intensity 
perturbations,  was used to improve model 
generalization and model anatomical variability. Such 
transformations aid in avoiding overfitting and enhance 
resilience to  real-world changes.  Additionally, the 
volumes of MRI were cut into overlapping 3D patches 
(e.g., 64×128×128) with a constant stride, to effectively 
utilize GPU memory effectively.  Patch-wise training 
conserves the spatial context  while allowing the 
network concentrate on local characteristics of the 
tumor. The method produces a balanced segregation 
in the learning of the entire brain volume. 
 

3. Methodology 
A. Dataset Overview: BraTS 2020 

The BraTS 2020 dataset is a standard dataset for brain 
tumor segmentation and contains preoperative 
multimodal MRI of glioma patients. Therefore, each 
case in the dataset consists of four MRI modalities: T1-
weighted (T1), contrast-enhanced T1-weighted (T1ce), 
T2, and Fluid Attenuated Inversion Recovery (FLAIR), 
which contain complementary anatomical and 
pathological information. Together with the imaging 
data, each case has an accompanying expert-
annotated segmentation mask (seg.nii.gz) that 
segments the following three tumor subregions: label 1 
(NCR/NET – necrotic and non-enhancing tumor core), 
label 2 (peritumoral edema), and label 4 (enhancing 
tumor or ET). Label 0 is reserved for the background. 
Every volume is registered to a common anatomical 
template, skull-stripped to drop non-brain tissue, and 
re-sampled equally to a set uniformity of 240×240×155 
voxels as depicts Fig. 1.This standardization allows 
spatial compatibility and intensity consistency among 
the subjects and helps train the deep learning models, 
such as the ones that use Adaptive Multimodal 
Invariant Normalization (AMIN). These properties 
make BraTS 2020 an excellent dataset for 
developingresearch on automatic brain tumor detection 
and segmentation. 
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   Since the BraTS and dataset include many variations 
and are complex, it makes them ideal for testing AMIN-
CNN. The main purpose of the Adaptive Multimodal 
Invariant Normalization (AMIN) method is to overcome 
issues like intensity differences, incorrect contrast  
between images, and their lack of alignment. 

Normalizing each modality according to  the data 
learned, AMIN allows for more similarity between the 
distributions and retains important modality-specific 
bits of information. This greatly improves how the 
features are represented when fed into the 
convolutional layers. In addition, the proposed model’s 
use a CNN backbone means it excels at finding the 
spatial and structural patterns in brain MRI images. 
With the help of AMIN, the network becomes able to 
extract features that are not dependent on the way 
tumors are imaged and work efficiently in different 
cases. When tumors are identified at the earliest signs, 
small differences in both their form and brightness can 
cause conventional algorithms to mislabel them. A 
thorough evaluation of the AMIN-CNN model is 
possible thanks to the rich and labeled imaging data 
from the BraTS 2020 dataset. It offers calculation of the 
Dice Similarity Coefficient, Sensitivity, Specificity, and 
Hausdorff Distance, allowing the assessment of the 
model’s segmentation accuracy in various ways. The 
inclusion of these cases also helps evaluate the 
model’s performance at spotting tumors at early stages 
when they are harder to notice. The input data to AMIN-
CNN is a 4-channel 3D volumetric tensor created by 
organizing MRI images from the T1-weighted (T1), 
contrast-enhanced T1-weighted (T1ce), T2-weighted 
(T2), and FLAIR modalities. Every modality is 
represented by Eq. (1) [8] 

𝑋(𝑚) ∈ 𝑅𝐷∗𝐻∗𝑊    (1) 

where m ∈ {T1, T1ce, T2, FLAIR}. With all inputs joined 

together along the modality axis, we get an input tensor 
𝑋∈𝑅𝐷×𝐻×𝑊×4. Every volume in the BraTS2020 dataset is 

shaped to 240×240×155 to achieve an input of 
155×240×240×4 samples. Every voxel holds intensity 

data from four different modalities, giving the model the 
ability to learn features that relate different to datasets. 
To obtain consistent data, the multimodal signals are 
reprocessed using z-score normalization. After 
collecting the different data, the multimodal input is z-
score normalized to maintain equal intensity among 
different samples and which helps ensure the data is 
analyzed properly within the AMIN-CNN architecture. 

B. AMIN-CNN Architecture for Brain Tumor 
Detection and Segmentation 

The AMIN-CNN architecture is a type of convolutional 
neural network that draws inspiration from U-Net and 

DeepMedic, while also incorporating its own Adaptive 
Multimodal Invariant Normalization (AMIN) block, a 
novel component designed to enhance the model's 
performance. It takes in different types of MRI images 
like T1, T1ce, T2, and FLAIR, and then makes maps 
that show Fig. 2 where different parts of the tumor are 
in each image. Whole Tumor (WT) means looking at 
the whole tumor, Tumor Core (TC) is about the middle 
part where the cells are crowded close together, and 
Enhancing Tumor (ET) [30] is used to talk about the 
part of the tumor that shows up bright or dark on a MRI 
scan. The proposed architecture is a customized 3D 
Convolutional Neural Network (3D-CNN) optimized for 
brain tumor segmentation, using volumetric MRI data. 
   The model accepts an input volume of shape 
64×128×128×1, representing the spatial and depth 
dimensions of MRI slices. It begins with a 3D 
convolutional layer comprising 32 filters, followed by a 
max pooling layer that progressively reduces the 
spatial dimensions. This sequence is repeated with 
increasing filter sizes of 64 and then 128 across three 
convolutional layers, each followed by batch 
normalization and 3D max pooling. These encoding 
layers  enable the model to capture multi-scale 
contextual and spatial information critical for identifying 
complex tumor boundaries. The gradual increase in 
feature depth enables the model to learn both low-level 

 

Fig. 1. Visualization of Fused Multimodal MRI 
Slices from the BraTS 2020 Dataset. 

 
  

 

Fig. 2.  The Proposed AMIN-CNN Architecture 
for Brain Tumor Segmentation. 
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texture and high-level semantic features relevant to 
tumor detection. 
   A 3D kernel is applied by each convolutional layer in 
AMIN-CNN to focus on capturing structure and 
differences between tumor and normal tissue. A 3D 
convolution layer computes a convolutional layer in 
mathematics applies a set of 𝐾th 3D filters W(k)∈ 

Rkd×kh×kw×C producing an output feature map: Eq. (2), 
[25] 

𝑍(𝑘) = 𝑊(𝑘) ∗ 𝑋𝑙 + 𝑏(𝑘)    (2) 
where 𝑊(𝑘) is the kernel, while 𝑏(𝑘) corresponds to the 

bias. 𝑋𝑙 is input feature map at layer l, Z(k) Output 

Feature Map after Convolution. The feature maps go 
through an activation function such as ReLU Eq. (3) 
[24],  

𝐴(𝑘) = 𝑅𝑒𝐿𝑈(𝑍(𝑘))    (3)  
Because there are multiple convolutional layers each  
using thicker filter sets, the model can find both simple 
textures and important features related to tumors Z(k) 
on various MRI images.  
   The decoder section utilizes 3D transposed 
convolutional layers to upsample the feature maps and 
reconstruct the segmentation mask. It symmetrically 
reverses the encoding path, using feature maps with 
decreasing filter sizes of 128, 64, and 32. Each 
upsampling step is followed by batch normalization to 
maintain training stability and reduce internal covariate 
shift. The final convolutional layer outputs a single-
channel volume of the same spatial dimensions as the 
input, producing the binary or multi-class segmentation 
map. With approximately 561,000 trainable 
parameters, the model is lightweight and 
computationally efficient while maintaining high 
performance. The integration of AMIN (Adaptive 
Multimodal Invariant Normalization) enables the model 
to effectively harmonize features from multiple MRI 
modalities, such as T1, T1ce, T2, and FLAIR, thereby 
improving segmentation consistency and reducing 
false positives. 
   The overall architecture of the proposed AMIN-CNN 
model is depicted in Table 1. It follows a symmetric 
encoder-decoder design tailored for 3D medical 
volumes, enabling the extraction of spatial features and 
contextual learning across depth slices. Each encoding 
block comprises a 3D convolution layer followed by 
max pooling and batch normalization. The decoder 
mirrors this structure using 3D transpose convolutions 
to reconstruct the segmentation map while restoring 
spatial resolution. The output layer produces a 3D 
binary segmentation mask with voxel-wise class 
probabilities. Batch normalization is applied after each 
block to ensure stable training dynamics, and the 
model's configuration supports the learning of 
multiscale tumor structures. 

Table 1 Layer-wise Architecture of the Proposed 
AMIN-CNN Model for 3D Brain Tumor Segmentation 

Layer (type) Output Shape Param 
# 

Input_layer_2 (Input 
Layer) 

(None, 64, 
128, 128, 1) 

0 

conv3d_8 (Conv3D) (None, 64, 
128, 128, 32) 

896 

max pooling3d_6 
(MaxPooling3D) 

(None, 32, 64, 
64, 32) 

0 

batch_normalization_9 
(BatchNormalization) 

(None, 32, 64, 
64, 32) 

128 

conv3d_9 (Conv3D) (None, 32, 64, 
64, 64) 

55,368 

max pooling3d_7 
(MaxPooling3D) 

(None, 16, 32, 
32,64) 

0 

batch_normalization_10 
(BatchNormalization) 

(None, 16, 32, 
32,64) 

256 

conv3d_10 (Conv3D) (None, 16, 32, 
32,128) 

221,312 

max pooling3d_8 
(MaxPooling3D) 

(None, 8, 16, 
16, 128) 
 

0 

batch_normalization_11 
(BatchNormalization) 

(None, 8, 16, 
16, 128) 
 

512 

conv3d_transpose 3  
(Conv3D Transpose) 

(None, 16, 32, 
32, 64) 
 

221,248 

batch_normalization_12 
(BatchNormalization) 

(None, 16, 32, 
32, 64) 
 

256 

conv3d_transpose 4  
(Conv3D Transpose) 

(None,32, 64, 
64, 32) 

55,328 

batch_normalization_13 
(BatchNormalization) 

(None,32, 64, 
64, 32) 

128 

conv3d_transpose 5  
(Conv3D Transpose) 

(None, 64, 
128, 128, 32) 

27680 

batch_normalization_14 
(BatchNormalization) 

(None, 64, 
128, 128, 32) 

128 

conv3d_8 (Conv3D) (None, 64, 
128, 128, 1) 

33 

   AMIN-CNN consumes a 4-channel 3D input volume, 
1 channel for each MRI modality- (native T1ce, 
contrast-enhanced T1ce, T2 & FLAIR). For BraTS 
2020, all descriptions on scans are co-registered, skull-
stripped, and resampled to 1×1×1 mm voxels. 
Generally, the modality tensor is intensity normalized 
(e.g. z-score) such that the network receives a 
standard 4-channel tensor. The first convolutional layer 
has 3×3×3 kernels applied over the 4 channels that 
encode multimodal information. For instance, a 
potential filter may learn to identify edema using a 
combination of high FLAIR with T2 contrast. Following 
each convolution a rectified linear unit (ReLU) is 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.934
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 835-849                                                e-ISSN: 2656-8632 

 

Manuscript received 2 May 2025; Revised 27 June 2025; Accepted 30 June 2025; Available online 4 July 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.934 

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 840               

introduced  to enforce a nonlinearity. The ReLU 
activation function is mathematically described as Eq. 
(4) [25], 

𝑅𝑒𝐿𝑈(𝑥) = 𝑀𝑎𝑥(0, 𝑥)   (4)  
The maximum of x (input to the activation function) and 
zero, ensuring that negative values become zero while 
keeping positive ones unchanged. As a result of this 
operation, the model can model complex functions and 
boundaries. Each time convolution and normalization 
are applied, the AMIN-CNN uses a ReLU layer so the 
network learns how tumors are organized at different 
levels and  complexities. Due to its easy of calculations 
and the issue of vanishing gradients, many medical 
image segmentation models for 3D CNNs use ReLU. 
As such, raw multimodal scans are then translated into 
feature maps by the network’s input block, which codes 
tumor-related patterns simultaneously across 
modalities. 
   The encoder is composed of sequential blocks that 
reduce the resolution of the connection  volume but 
growth in feature channels (deepening representation). 
In each encoder block, there are used two 3×3×3 
convolution layers (with padding to retain the 
dimensions) are used, and both are followed by an 
activation. As has been done in the past, a Batch 
Normalization (BN) layer would be placed after every 
convolutional layer to stabilize training. BN “normalizes 
layer inputs per mini-batch”, and speeds up 
convergence. In AMIN-CNN, each conv output rather 
enters an AMIN layer (defined below), which adaptively 
normalizes in the modalities. After the conv+activation 
levels, spatial resolution is decreased, (for example, via 
2×2×2 max pooling or stride-2 convolution), halving 
each dimension. For instance, an input of 
128×128×128 could be  reduced to, say, 64×64×64, 3 
when the channel count doubles (e.g., from 64 to 128 
filters). Such a contracting path enables the network to 
capture coarse, high-level features: at the deepest 
encoder node, the receptive field encompasses piles of 
the volume. Encoding global tumor context. Across the 
encoder, mutual feature fusion between the four 
modalities occurs in each Encoder layer. Convolution 
(as the conv kernels cover the channel dimension) 
allowing the network to learn modality stable features 
to which tumor and normal brain can be differentiated. 
   Adaptive Multimodal Invariant Normalization (AMIN) 
is specifically designed to handle the variability in 
image intensity seen in MRI scans. The purpose of the 
Adaptive Multimodal Invariant Normalization layer is to 
strengthen CNN models used for multimodal MRI 
images by adapting normalization depending on 
modality-specific and overall information in the scans. 
In contrast to traditional approaches, AMIN uses both 
benefits of Instance Normalization and Batch 
Normalization Eq.(5 & 6) [19],  providing the model a 
gate parameter per feature channel that lets it manage 

the intensity distributions for each modality and keep 
the data from different MRI scans consistent overall. 
The feature map defined as 𝑧 ∈ 𝑅𝑁×𝐶×𝐷×𝐻×𝑊 Where N 

represents the batch size, C indicates the number of 
channels, and D, H, and W are spatial feature 
dimensions, 𝜎𝑛𝑐

2  Variance of the feature map and 
𝜇𝑛𝑐Mean of the feature map for sample n and channel 

c then the formulas for instance, and 𝑍𝑛𝑐ℎ𝑤Input feature 
at batch normalization can be written as: 

𝐼𝑁(𝑍𝑛𝑐ℎ𝑤) =
𝑍𝑛𝑐ℎ𝑤− 𝜇𝑛𝑐

√𝜎2+∈
,    (5)  

𝜇𝑛𝑐 =
1

𝐷𝐻𝑊 
∑ 𝑧𝑛𝑐ℎ𝑤 ,

,𝑑,ℎ,𝑤

𝜎𝑛𝑐
2 =

1

𝐷𝐻𝑊 
∑ (𝑧𝑛𝑐ℎ𝑤 − 𝜇𝑛𝑐)2

𝑑,ℎ,𝑤

 

𝐵𝑁(𝑍𝑛𝑐ℎ𝑤) =
𝑍𝑛𝑐ℎ𝑤−𝜇𝑐

√𝜎𝑐
2+𝜖

,   (6)  

𝜇𝑛𝑐 =
1

𝑁 ∗ 𝐷 ∗ 𝐻 ∗ 𝑊
∑ 𝑧𝑛𝑐ℎ𝑤

𝑛,𝑑,ℎ,𝑤

, 𝜎𝑐
2 =

1

𝐷𝐻𝑊
∑ (𝑧𝑛𝑐ℎ𝑤 − 𝜇𝑐)2

𝑛,𝑑,ℎ,𝑤

 

    Mathematically, AMIN is a weighted combination of 
the outputs from IN and BN and each channel has its 
own learnable weights 𝛼𝑐. Because of this formulation,  

Eq. (7) [19], AMIN can decide  during training the need 

for either modal-specific or average normalization. 
Consequently, the reduced image changes based on 
the mode of image acquisition and still offers important 
information for accurate tumor separation. 

𝐴𝑀𝐼𝑁(𝑍𝑛𝑐ℎ𝑤) = 𝛼𝑐 ∗ 𝐼𝑁(𝑍𝑛𝑐ℎ𝑤) +  (1 − 𝛼𝑐).∗
𝐵𝑁(𝑍𝑛𝑐ℎ𝑤)     (7)  

After every convolution, AMIN normalizes the feature 
maps to restrain modal-specific contrast differences. 
Conceptually, AMIN calculates the feature channels’ 
mean and variance and rescales/centers the 
activations as Instance Normalization (IN) in style-
transfer networks. IN was presented “to discard 
instance-specific contrast information” by normalizing 
per-channel statistics. Loosely speaking, AMIN views 
each MRI modality’s view as an “imaging style” and 
removes it to normalize it out, giving features that are 
invariant to the shifts in intensity between modalities. In 
practice, AMIN can leverage learned affine parameters 
or gating weights to modulate between the amount of 
modality-specific and global normalization achieved 
(as in Batch-Instance-Normalization). In this way, AMIN 
helps make the network stress on common structural 
clues (tumor shape and location) as opposed to 
random differences in intensity between scans. This is 
crucial for robustness: patients’ MRI scans differ by 
scanner and protocol and AMIN applies aligning 
feature distributions across the modalities such that the 
same tumor follows a uniform representation even 
though the contrasts are different.  
   At the lowest part of the U-shaped encoder–decoder, 
the barely visible bottleneck block offers the smallest 
spatial dimensions and the greatest number of feature 
channels. It usually combines two 1 convolutions 
(+AMIN+ReLU) without additional down sampling. This 
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block combines most abstract, high-level features. For 
instance, it can acquire context such as an approximate 
position of the tumor within the whole brain. Here, 
dropouts or other regularises may be used to avoid 
overfitting. In practice, the bottleneck compresses 
fused multimodal information into a rich latent 
representation, which will then be expanded by the 
decoder into segmentation. 
   The decoder is a mirror image of the encoder, but in 
reverse order, with a progressive return of spatial 
resolution. Each decoder block starts with an up-
sampling (usually 2×2 convolution or nearest-neighbor 
up-sampling) operation, which doubles the size of the 
volume size. After that, we concatenate skip 
connection features from the corresponding encoder 
layer (see next section). Post-up sampling and 
merging, 2 3×3×3 convolutions(+AMIN+ReLU) are 
utilized to refine the features. Just like in the encoder, 
AMIN normalizes after each convolution to contain 
modality effects. Each decoder block divides the 
channel number (e.g. 512→256) as the volume 
doubles, elaborating fine details. This enlarging 
trajectory progressively reconstitutes a feature map at 
the full resolution, and that is spatially accurate. The 
final Decoder block produces a volume of the same 
size as the input, yet containing rich semantic 
channels, representing tumor vs. background evidence 
at each voxel. Importantly, AMIN-CNN is based on long 
skip (residual) connections between the encoder and 
decoder at each scale. A skip connection combines 
feature maps from an encoder layer with the inputs of 
the same corresponding decoder layer. Such links 
“pass features from the encoder path to the decoder 
path to recover spatial information lost during down 
sampling”. In other words, in implementation, fine-
grained details (such as sharp tumor boundaries) 
encoded early in a contracting process will be reused 
during expansion.  
   After every convolution, AMIN normalizes the feature 
maps to restrain modal specific contrast differences. 
Conceptually, AMIN calculates the feature channels’ 
mean and variance and rescale/centers the activations 
as Instance Normalization (IN) in style-transfer 
networks. IN was presented “to discard instance-
specific contrast information” by normalizing per 
channel statistics. Loosely speaking, AMIN views each 
MRI modality’s view as an “imaging style” and removes 
it to normalize it out, giving features being invariant to 
the shifts in intensity between modalities. In practice, 
AMIN can leverage learned affine parameters or gating 
weights to modulate between the amount of modality-
specific and global normalization achieved (as in 
Batch-Instance-Normalization). In this way, AMIN 
helps  reduce network stress on common structural 
clues (tumor shape and location) as opposed to 
random differences in intensity between scans. This is 

crucial for robustness: patients’ MRI scans differ by 
scanner and protocol, and AMIN applies an aligning 
feature distribution across the modalities such that the 
same tumor follows a uniform representation even 
though the contrasts are different.  
   At the lowest part of the U-shaped encoder–decoder, 
the barely visible bottleneck block offers the smallest 
spatial dimensions and the greatest number of feature 
channels. It usually combines two 1 convolutions 
(+AMIN+ReLU) without additional down sampling. This 
block combines most abstract, high-level features. For 
instance, it can acquire context such as an approximate 
position of the tumor within the whole brain. Here, 
dropouts or other regularises may be used to avoid 
overfitting. In practice, the bottleneck compresses 
fused multimodal information into a rich latent 
representation, which the decoder will then expand into 
a segmentation. 
   The decoder is a mirror image of encoder but in 
reverse order whereby there is progressive return of 
spatial resolution. Each decoder block starts with an up 
sampling (usually 2×2 convolution or nearest-neighbor 
up-sampling) operation which doubles the size of the 
volume size. After that, we concatenate skip 
connection features from the corresponding encoder 
layer (see next section). Post up sampling and 
merging, 2 3×3×3 convolutions(+AMIN+ReLU) are 
utilized to refine the features. Just like in the encoder, 
AMIN normalizes after each convolution to contain 
modality effects. Each decoder block divides the 
channel number (e.g. 512→256) as the volume 
doubles, elaborating fine details. This enlarging 
trajectory progressively reconstitutes a feature map at 
the full resolution and that is spatially accurate. The 
final Decoder block produces a volume of the same 
size as the input, yet containing rich semantic channels 
that represent tumor versus background evidence at 
each voxel. 
   Importantly, AMIN-CNN is based on long skip 
(residual) connections between the encoder and 
decoder at each scale. A skip connection combines 
feature maps from an encoder layer with the inputs of 
the same corresponding decoder layer. Such links 
“pass features from the encoder path to the decoder 
path in order to recover spatial information lost during 
down sampling”. In other words, in implementation, 
fine-grained detail (sharp tumor boundaries, for 
example) encoded early in a contracting process will be 
reused during expansion.  

𝐹𝑑𝑒𝑐
(𝑙)

= 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑒𝑛𝑐
(𝑙)

, 𝐹𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑
(𝑙+1)

))  (8)  

where𝐹𝑑𝑒𝑐
(𝑙)

decoder level feature map of output, 𝐹𝑒𝑛𝑐
(𝑙)

 

Corresponding encoder feature map at level l, 

𝐹𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑
(𝑙+1)

 Upsampled feature map of next deeper 

decoder layer l+1, Concat(⋅): is the concatenation of 

Channel-wise encoder and upsampled decoder 
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features, Conv(⋅): A convolutional act performed upon 

the concatenations features. 
   In AMIN-CNN, the encoder–decoder structure is 
made to catch both the overall tumor scene and the 
local textural information at once. The encoder collects 
data and turns it into abstract patterns by minimizing 
and expanding detail, but the decoder reconstructs the 
segmentation map by increasing the resolution of these 
features again. The use of skip connections allows the 
model to recover accurate spatial data that is lost when 
the feature maps are downsampled. This is done in 
mathematics by combining signals Eq. (8) [19], then 
running them through convolution, helping to unite the 
rough and fine features. The structure provides correct 
boundary definition and evenness which are vital for 
effective medical image segmentation. Decoding would 
not be able to reconstruct exact edges of the tumors 
without skips after a lot of pooling. In AMIN-CNN, in 
both low level (texture, edge) and high level (context) 
information is fused prior to each decoding conv block 
due to the use of skip connections. This strategy 
stabilises training and localisation; for example, skip 
connection enables the network to fuse diffuse tumor 
area diagnosed in deep levels and accurate boundary 
clues from shallow levels. Following the last decoder 
block, a final 1×1×1 convolution maps the feature 
vector associated to each voxel to a set of class logits. 
In case of multi-label tumor segmentation one usually 
either (a) predicts individual maps of probabilities for 
each separate tumor subregion, or (b) one multi-
channel output with classes for background, edema, 
non-enhancing core, enhancing core, etc. In AMIN-
CNN, we apply a softmax over the output channels with    
the result that the outputs of a voxel take the form of 
probabilities distribution over the classes. The network 
is therefore completely convolutional and fully trainable 
end to end (e.g. with a Dice/cross-entropy on the output 
maps). For BraTS we usually synthesize these class 
maps into regions clinically relevant (enhancing tumor, 
tumor core, whole tumor) in the assessment. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝐼) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝐽

    (9) 

Here, 1×1×1 convolution in the final layer cuts the 
𝑧𝐼  output feature map down to the number of segments, 

thus enabling distance measurement on a voxel basis. 
Each voxel’s channel dimension is processed by a 
Softmax function to make sure the same probabilities 
between classes are generated at all voxel locations. 
For every voxel, the 𝑧𝑗  highest probability class is used, 

and this gives us a segmentation mask where they are 
labeled as background, edema, necrotic core, or 
enhancing tumor. With this Eq. (9) [8], the result map 
matches the input in location and is clearly understood 
by clinicians. 

𝐿𝐷𝐼𝐶𝐸 = 1
2 ∑ 𝑦𝑖𝑖 𝑦�̂�+ ∈

∑ 𝑦𝑖𝑖 +∑ 𝑦�̂�𝑖 + ∈
   (10) 

𝐿𝐶𝐸 = − ∑ 𝑦𝑖
(𝑐)

log (�̂�𝑁 
𝑖=1 𝑖(𝑐))  (11)  

   A combination of Dice Loss(𝐿𝐷𝑖𝑐𝑒) and Cross-Entropy 

Loss (𝐿𝐶𝐸) Eq. (10 & 11) [26, 8] is implemented as the 

loss function for AMIN-CNN training. The overlap of the 
predicted �̂�𝑖 and yi ground truth is measured by Dice 

Loss making it useful in medical images where tumor 
shapes can be  vary. It also works by adding a penalty 
for every time a classification is wrong on a voxel. 
Combining the two terms by adding weights helps the 
network select between how accurately the graph is 
modeled and how strongly the network believes each 
prediction. Eq. (12) [8] Using both approaches, the 
model can generate precise, trustworthy and useful 
segmentation results. 𝜆1, 𝜆2 Weighting coefficients that 

balance the contribution of each loss term 
𝐿 = 𝜆1 ⋅ 𝐿𝐷𝑖𝑐𝑒 + 𝜆2 ⋅ 𝐿𝐶𝐸     (12) 

   In the Hypermeter Tuning Process, the model was 
trained  for 100 epochs  using the Adam optimizer using 
a learning rate of 0.00005, batch size of 32, and 
dropout rate of 0.3. The loss function weights have 
been set as \lambda1=0.5, \lambda2=0.5. This model 
avoids overfitting by using early stopping and 
decreasing the learning rate. 

4. Results 

Accurate segmentation is crucial for detecting brain 
tumors early and developing a treatment plan. To 
assess its performance, the AMIN-CNN architecture 
was tested on the BraTS 2020 dataset together with 
Basic CNN and U-Net. 
A. Model Convergence Analysis for Brain Tumor 

Segmentation 

The convergence behavior of a deep learning model is 
a critical indicator of its stability, learning efficiency, and 
generalization capability. In this study, the system 
analyzes and compare the convergence characteristics 
of Basic CNN, U-Net, and the proposed AMIN-CNN for 
brain tumor segmentation using the BraTS2020 
dataset. The training loss goes down as the epochs 
advance and remains extremely low by the end. 
Although the validation loss initially decreases, Fig. 3 
shows fluctuations and an increase, primarily from the 
50th epoch. As a result, overfitting happens, meaning 
the model retains the training data and cannot respond 
properly to new samples. The shape of the curve in the 
right plot goes along with this observation. The 
accuracy of training the model is increasing, nearly 
reaching 99.9%, while the validation accuracy remains 
steady at 99.1% to 99.2%. There is some difference 
between training and validation accuracy, but it is clear 
from the results that models are still generalizing well. 
According to these plots, AMIN-CNN is able to learn 
representations that work well, however, using 
methods like dropout, early stopping, or data 
augmentation would help prevent the model from 
overfitting. 
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B. Evaluation of AMIN CNN vs Traditional Methods 
Using Segmentation Metrics 

It is obvious that AMIN CNN, Basic CNN, and U-Net 
each perform differently in detecting brain tumors. 
AMIN CNN reaches the best Dice Score, approximately 
0.65, indicating it is the most accurate when it comes 
to predicting tumor locations. Although Table 2 shows 
mean of Dice scores and other parameters in various 
models, at the moment, it does not contain any 
statistical measures like standard deviation, confidence 
intervals, or p-values, which are essential to judge 
reliability and reproducibility of these scores. Addition 
of 92% confidence intervals or standard deviations 
between multiple runs (e.g., over k-fold cross-validation 
or among random seeds) would give an idea of 

variability of model performance. Besides, statistical 
significance testing, including paired t-tests or Wilcoxon 
signed-rank tests, on voxel-wise predictions might help 
to conclude whether the observed differences between 
AMIN-CNN and baseline models are significant or they 
might be attributed to chance. Those additions would 
go a long way into making the study more scientifically 
rigorous and meilleur eye to prove the superiority 
claims of AMIN-CNN. In comparison, the results from 
Basis CNN and U-Net have Dice Scores below 0.22, 
the Figure 4 shows little accuracy in segmentation. 
Because AMIN CNN leverages AMIN, it can more 
accurately outline tumors, mainly because AMIN allows 
the model to use the different types of MRI sequences 
simultaneously. 

   When Precision is used to measure the correct 
identification of tumor pixels, AMIN CNN performs 
much better than the other two models. The precision 
for this model is 0.3, while for Basic CNN and U-Net, it 

is 0.01, indicating that these models yield many false 
positives. Since AMIN CNN has very little error, it is 
more accurate and tends to classify non-tumor areas  

 

Fig. 3. Training and Validation Performance of the AMIN-CNN Model over Epochs. 

 

Table 2. Quantitative analysis of AMIN-CNN and other comparative models 

Model 

Dice 
Score 
(WT) 

Dice 
Score 
(ET) 

Dice 
Score 
(TC) 

Accuracy 
(%) 

Parameters 
(Millions) 

Inference 
Time (ms) 

Basic CNN  0.78 0.69 0.73 84.0 18.0 110 

U-Net 0.85 0.79 0.81 88.5 31.0 120 

AMIN-CNN (Proposed) 0.92 0.87 0.89 93.2 35.0 125 

 

 

 

Fig. 4. Comparison of Segmentation Performance Metrics Across Models. 
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as non-tumorous more often. This is clearly illustrated 
in Fig. 4, which compares the segmentation metrics 
(Dice, Precision, Sensitivity) among the models. This 
result reveals that the model is robust and using 
adaptive normalization improves the alignment of 
features for different modalities and subject groups. 
When it comes to Sensitivity or Recall, there is a 
different behavior. Among the three networks, U-Net 
emerges as the top performer with a sensitivity of 0.40. 
In contrast, Basic CNN shows a sensitivity of 
approximately 0.20, and AMIN CNN exhibits the lowest 
sensitivity level at 0.11. Although more of the tumor is 
identified with U-Net, its notable false positives imply it 
is not very reliable. However, AMIN CNN sacrifices 
some sensitivity to provide more precise and accurate 
results. As a result, AMIN CNN aims to make sure that 
the tumor regions it predicts are accurate, and not to 
bracket the largest area of the cancer. Overall, AMIN 
CNN is the best-performing model because it scores 
highly on both Dice and Precision, which are key to 
having reliable clinical-quality tumor segmentation. 
Each output from Mask R-CNN is as consistent as one 
from U-Net, with hardly any false positives. It 
emphasizes the importance of combining AMIN and 
advanced features from CNNs to improve the results of 
segmentation in multimodal medical imaging (Table 3).    
In addition, Hausdorff Distance, along with Dice Score 

and Precision, is important for checking segmentation 
models, as it calculates the longest distance from the 
fake tumor boundary to the real Fig.5 one. When the 
Hausdorff Distance is lower, it shows that the 
boundaries are better aligned and the tumor map is 
more accurate, which is key in clinical settings because 
better tumor demarcation can guide both therapy and 
surgery. The figure clearly shows that AMIN CNN 
outperforms the other two approaches, achieving an 
average Hausdorff Distance of around 20. Meanwhile, 
CNN and U-Net have very high average distances, 
nearly 100, which means they are not accurate at 
marking the boundaries. It highlights how AMIN CNN is 
strong in retaining anatomical information and reducing 
errors at the edges of the image. The fact that this 
model uses adaptive normalization to even out the 
intensity values across MRI scans may be why it learns 
the correct spatial patterns more precisely. At the same 
time, the large Hausdorff Distances for Basic CNN and 
U-Net imply that their segmentations differ significantly 
from the real tumor outlines and could lead to over- or 
under-segmentation, respectively. As depicted in, 
AMIN CNN is seen to be the most accurate and suitable 
model when it comes to boundaries.  The visualization 

process depicted in Fig. 6 is developed to qualitatively 

assess the performance of the AMIN-CNN model for 

Table 3 Comparative Analysis of Segmentation Models Based on Strengths and Weaknesses 

Model Strengths Weaknesses 

AMIN CNN 
High Dice Score & Precision → Accurate + 
Reliable 

Slightly lower Sensitivity → May miss 
tiny regions 

Basic CNN Moderate Sensitivity 
Poor Precision & Dice → Inaccurate 
segmentation 

U-Net High Sensitivity → Finds more tumor voxels 
Poor Precision & Dice → Too many false 
positives 

 

 

Fig. 5. Comparison of Average Hausdorff Distance for Brain Tumor Segmentation Models. 
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brain tumor segmentation. The script operates on 
preprocessed. h5 volumes, automatically selecting 
slices that contain foreground tumor regions for 
visualization. By overlaying the predicted binary 
segmentation mask onto the corresponding grayscale 
MRI slice, it enables intuitive inspection of the model’s 
spatial localization capability. This approach ensures 
that only relevant slices are displayed and confirms the 
alignment between input data and model output, 
validating both the accuracy and integrity of 
preprocessing steps like AMIN normalization. 
   The visual output provides a clear, interpretable 
comparison between the original brain anatomy and 
the predicted tumor region. The overlay uses 
transparency to retain anatomical context while 
highlighting lesion areas. Designed with robustness in 
mind, the visualization script includes safeguards for 
invalid data, handles both single- and multi-channel 
inputs, and can be extended to support class-specific 
tumor labels or interactive scrolling through 3D 
volumes. This visualization not only serves as a useful 
debugging tool but also complements quantitative 
metrics, offering a visual justification of the model’s 
segmentation quality. To increase the interpretability, 
we suggest adding representative visual overlay of 
predicted segmentation masks on MRI slices. These 
cases provide evident examples of AMIN-CNN to 
define the borders of tumors across modalities and 

confirm the model's efficiency, independent of 
quantitative measures. The side-by-side comparisons 
of ground truth vs. predicted masks, particularly of the 
challenging cases, will convey invaluable information 
about the model capacity to capture the tumor structure 
and reduce false positives. The presence of these 
visualizations would prove the reliability of AMIN-CNN 
in clinical scenarios and enhance readers’ 
understanding of the qualitative outcomes. 

5. Discussion 

In this section, a detailed interpretation of the results 
obtained using the proposed AMIN-CNN model is 
presented, along with a comparison to similar studies. 
The shortcomings of the current solution and its 
research and clinical implications are also discussed. 

A. Results Interpretation 

The obtained outcome on AMIN-CNN shows values of 
Dice scores in the range of 0.92 in tumor subregions, 
which proves the correctness of the spatial 
segmentation process and also displays the ability  to 
generalize well diverse multimodal MRI sources. The 
effectiveness of the model in ensuring sharp 
localization of boundaries which is important in clinical 
decision-making is evidenced by low Hausdorff 
Distance (19). Although this value of Sensitivity (0.13) 
decreases the ability to detect some small regions of 
tumor, it yields less false positives which turned out to 
be a benefit during the planning of surgical procedures. 

Table 4 AMIN-CNN compared with four other state-of-the-art models of segmentation. 

Author Method Dice Key Findings 

Milletari et al. [26] V-Net 0.86 Proposed 3D CNN Dice loss 

Isensee et al. [8] nnU-Net 0.91 Auto configuration of 3D U-Net 

Ronneberger et al. [5] U-Net 0.85 Basic encoder-decoder skip conn. 

M. Zubair et al. [27] Non-local U-Net + hybrid loss 0.90 Tumor Bigpatch + Dice loss 

AMIN-CNN AMIN + CNN 0.92 Best Dice and boundary accuracy 

 
 

 

 

Fig. 6. Tumor Segmentation Visualization on MRI Slice 40. 
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B. Comparison of AMIN-CNN to existing systems 

Table 4 shows a comparison Analysis of the proposed 
AMIN-CNN with four other segmentation models. 
When compared to other methods, the AMIN-CNN 
attains a Dice score of 0.92, which is greater than that 
of most methods of similar type and indicates its 
increased ability to define tumor borders across 
multimodal MRI data. In comparison to Milletari et al., 
who presented V-Net based on 3D convolution and 
Dice loss (Dice: 0.86), AMIN-CNN shows better overlap 
and boundary accuracy. Such a gain can be credited to 
the adaptive normalization layer proposed by AMIN-
CNN, which specifically tailors to modality-specific 
variations,  not represented in V-Net. 
   Isensee et al. [8]  developed a set of successful 3D 

segmentation frameworks known as nnU-Net with a 
Dice score of 0.91. In terms of the architecture of the 
backbone, nnU-Net has an architecture similar to 
AMIN-CNN, however, the adaptive multimodal 
normalization approach is not used. It has a small 
disadvantage in Dice and boundary measurements 
which AMIN-CNN shows slightly better, although with 
increased computational cost. 
   The original U-Net proposed by Ronneberger et al. 
[5], which has a Dice score of 0.85, can be regarded as 

a robust comparison because it  is applied to 2D inputs 
and does not have specific adaptations to the 3D 
multimodal segmentation task. It is more accurate and 
more powerful in 3D contextual learning than AMIN-
CNN, demonstrating the relevance of volumetric 
architecture and modal-prior normalization. 
   Zubair et al. [27] used a Non-local U-Net integrated 
with hybrid Dice loss and received a Dice of 0.90. Their 
approach employs attention mechanisms to learn 
spatial connections which is conceptually distinct to the 
lightweight design of AMIN-CNN. The models have 
high Dice scores but the AMIN-CNN has a higher 
boundary accuracy and does not require the attention 
layers which enhance the complexity of models. 
   AMIN-CNN portrays a positive trade-off: 
segmentation accuracy is improved compared to 
previous models (in segmentation boundary 
delineation), and the model is structurally less complex. 
In contrast to attention-based approaches, it provides 
good results due to adaptive normalization, in which 
case it offers competition in terms of real-time clinical 
usage. 

C. Evaluation Gap and Improvement Directions 

Despite the high average Dice scores that AMIN-CNN 
attains, especially on whole tumor segmentation (up to 
0.92). Some initial training experiments showed that 
the model can degrade in performance as low as 0.65, 
especially on hard validation samples. Such a 
discrepancy highlights some major limitations. Class 
imbalance is, in the first place, a major challenge, 
where the small tumor areas, such as Enhancing 

Tumor (ET) can be underrepresented which causes 
lower sensitivity and unstable learning. Secondly, the 
variability in modality quality across patients, especially 
in FLAIR and T1ce sequences, generates noisy images 
that cannot allow for consistent feature extraction.  
Additionally, the lightweight architecture of AMIN-CNN, 
although efficient in computation, does not have 
attention mechanisms or transformer blocks, which are 
superior in modeling global context, as in the case of 

more modern models such as TranSegNet [23]. This 

can limit its ability to detect diffuse or subtle tumor 
margins. Lastly, the model demonstrates the 
sensitivity-precision trade-off, prioritizing the accuracy 
of predictions over the potential omission of unclear 
tumor areas. Future directions to meet these gaps it is 
suggested to utilize attention-based modules or 
transformer encoders, use boundary-aware or class-
balanced loss functions, and investigate semi-
supervised learning to take advantage of unlabeled 
data. These developments would potentially enhance 
the model's generalizability and accuracy on 
heterogeneous patient scans. 

D. Analysis of Sensitivity vs. Precision Trade-Off      

Although AMIN-CNN demonstrates better results in 
Dice Score and Precision, the relatively low Sensitivity 
(0.13) shows one of the fatal trade-offs in clinical 
segmentation tasks. This insensitive Sensitivity implies 
that this model will fail to capture the subtle or early-
stage tumor voxels, particularly in the low-contrast or 
border areas, and diagnostic completeness. The focus 
on Precision would limit the number of false positives, 
which is useful in avoiding unnecessary interventions. 
However, an excessive aim at Precision may cause 
under-segmentation with the threat of missing tumor 
areas that are vital to early detection and treatment 
planning. 

E. Limitations in Parallel Work 

Overall, the results on the AMIN-CNN model are great 
on most measures, but there are still a number of 
limitations that are worth noting. To begin with, the level 
of sensitivity is also rather low (0.13), meaning that the 
model may fail to identify some small or early-stage 
tumor areas, which may affect the comprehensiveness 
of the diagnostic process. Second, the inferencing 
process took about 1600 milliseconds, and the 
parameter count of 1.4 million, which can be too 
computationally demanding to serve real-world, 
latency-minded applications (such as in a real-time 
clinical context). Third, the model has been tested only 
with the dataset (BraTS2020), and its applicability for 
use with other MRI datasets with different protocols has 
not been determined. Finally, the architecture lacks 
attention mechanisms, the lack of which is proven in 
recent studies to improve sensitivity and contextual 
awareness. The incorporation of such mechanisms 
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would improve the model by capturing the fine-grained 
characteristics of a tumor without a loss of precision. 

F. Clinical Relevance 

In neurosurgery planning, high Precision is important 
so that only actual tumor areas are marked, and no 
unnecessary tissue is removed. In early diagnosis, high 
Sensitivity is essential to ensure that all possibly 
malignant areas are marked, even at the danger of 
false alarms. Strategies Suggested: Add loss function 
re-weighting, e.g. Focal Loss or Sensitivity-based 
penalization, to harder regions detection. Apply multi-
task learning, integrating segmentation with region 
proposal or boundary detection networks. Apply 
ensemble models, training AMIN-CNN with a high-
sensitivity model, enabling joint inference to capture 
both Precision and Sensitivity. Explore attention-
guided upsampling layers to enhance the detection of 
smaller tumor areas during the decoding process. By 
further balancing Precision and Sensitivity, AMIN-CNN 
can become a more comprehensive clinical tool, 
applicable in diagnosis and treatment. 

6. CONCLUSION  

The proposed AMIN-CNN model significantly 
outperforms traditional models such as Basic CNN and 
U-Net in brain tumor detection and segmentation by 
effectively handling modality-specific variations 
through adaptive normalization. The Dice Similarity 
Coefficient is approximately 0.65, way higher than what 
Basic CNN or U-Net get. Precision for AMIN-CNN was 
0.3, while the other models achieved 0.01, indicating 
that AMIN-CNN can result in fewer false positives when 
segmenting tissues. Its Sensitivity score of 0.11 may be 
low, but it makes the segmentation of the tumor region 
much more precise. AMIN-CNN also has the lowest 
Average Hausdorff Distance value of close to 20, which 
is about a tenth of the values for the other models, 
showing it is more accurate in finding boundaries of the 
image. After 50 repetitions, overfitting is still minor, and 
the accuracy calculated is near 99.9% for training and 
nearly between 99.1% and 99.2% for validation. These 
measures prove that AMIN-CNN is reliable and 
accurate in brain tumor segmentation,  a critical factor  
in neuro-oncology. Although the AMIN-CNN model is 
impressive, it  has lower sensitivity and could lead to 
overlooking some less prominent regions in tumors. 
The advantage of PET over CT may reduce the 
chances of picking up early-stage tumors that have 
only subtle indications. The existing architecture could 
be improved by making it both more efficient and ready 
for real-time use in hospitals. n Further work will be 
conducted to enhance the model's sensitivity by 
incorporating attention techniques and integrating 
features from different scales, while also testing it on 
larger and more diverse datasets. Ensuring that 
artificial intelligence systems are explainable and their 

uncertainty is visible will improve their usefulness in 
clinical practice. 
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