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ABSTRACT The integration of neural networks into FPGA-based systems has revolutionized embedded computing by 

offering high performance, energy efficiency, and reconfigurability This paper introduces a novel optimization framework 

integrating Principal Component Analysis (PCA) to reduce the complexity of input data while preserving essential features for 

accurate neural network processing. By applying PCA for dimensionality reduction, the computational burden on the FPGA is 

minimized, enabling more efficient utilization of hardware resources. Combined with hardware-aware optimizations, such as 

quantization and parallel processing, the proposed approach achieves superior performance in terms of energy efficiency, 

latency, and resource utilization. Simulation results demonstrate that the PCA-enhanced Liquid Neural Network (LNN) 

deployment significantly outperforms traditional methods, making it ideal for edge intelligence and other resource-constrained 

environments. This work emphasizes the synergy of PCA and FPGA optimizations for scalable, high-performance embedded 

systems. A comparison study using simulation results between cascaded feed forward neural network (CFFNN), deep neural 

network (DNN) and liquid neural network (LNN) has been encountered here  for the embedded system to show the efficacy of  

PCA based LNN.  It has been shown from case studies that the average F1score is 98% in case of proposed methodology and 

accuracy is also 98.3% for high clock value. 

INDEX TERMS CFFNN, DNN, FPGA, Liquid neural network, Principal component analysis, Reconfigurable hardware,

I. INTRODUCTION 

With the rapid advancement of embedded and mobile 

systems, a nascent domain of inquiry within data mining has 

emerged, focusing on streamlined software code and compact 

hardware architecture[1], [2]. In the contemporary landscape, 

data mining has assumed a pivotal role across various sectors, 

encompassing scientific research, medical diagnostics, 

marketing, biotechnology, multimedia, security, finance, 

among others. In the present era, the tasks associated with data 

management and data mining are increasingly characterized 

by computational complexity and significant data 

intensity[1],[3], [4]. These tasks necessitate considerable data 

processing capabilities. Moreover, in various contexts, the 

real-time data must be managed effectively to derive the 

genuine benefits. These limitations significantly impact the 

performance accuracy and speed of embedded system 

applications. To alleviate the demands and constraints present 

in portable, embedded devices, and to enhance the efficiency 

of applications on these platforms, it is imperative to integrate 

certain hardware within software and hardware system 
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architectures. The engineered hardware is specifically tailored 

to provide superior performance speed, area efficiency, and 

reduced power consumption [5] in comparison to the 

analogous software executed on microprocessors. 

In recent years, machine learning has emerged as a 

preeminent domain in a multitude of research applications, 

including human activity recognition. However, the escalating 

demands for accuracy and the complexities associated with 

practical implementations render the realization of such 

systems challenging due to device speed constraints and 

energy costs[6]. To address these limitations, enhancements 

in efficiency alongside reductions in power consumption have 

prompted increased interest in the reconfigurable utilization 

of hardware[7].  

The proposed architecture's design, implementation, and 

validation have been meticulously formulated to address 

existing deficiencies while enhancing both the speed and 

overall performance of the proposed system, all while 

maintaining exceptionally low power consumption levels. 

The objectives of this proposed work are to develop and assess 

a comprehensive reconfigurable framework that facilitates 

run-time adaptability through the application of machine 

learning (ML) methodologies. 

The principal cognizance of this architectural framework is 

predicated upon a machine learning algorithmic platform that 

augments classifiers operating on a general-purpose 

processor, by explicitly mapping the computationally 

intensive components that are executed by reconfigurable 

hardware. This methodology not only amplifies the 

performance of the architecture but also facilitates an increase 

in the embedded applications that will constitute the units 

functioning as co-processors within general-purpose systems. 

Machine learning constitutes a special domain that entails 

instructing machines on how to acquire knowledge, 

possessing the capacity to swiftly process extensive volumes 

of data through mathematical computations; consequently, 

machine learning has come out as a formidable instrument in 

contemporary times. Nevertheless, a novel generation of 

computational methodologies referred to as reconfigurable 

computing is now positioned to elevate machine learning to 

unprecedented levels. 

Computing integrates the speed of ICs with the flexibility 

of processors. Reconfigurable instruction set processors 

are one of the widely used reconfigurable 

computing products and have been developed 

using several design approaches. Their performance relies on 

the configuration units, which update the processor settings 

dynamically. To improve the performance of reconfigurable 

processors, a configuration design has been created that 

maximizes the reusability of existing configuration streams. 

This architecture allows for the loading of the most ideal 

configurations, which results in increased efficiency and 

performance. In some fundamental applications, a fixed 

processor design is a good choice. However, unknown 

applications have such a diverse set of algorithms that a fixed 

standard will fail to meet the desired process speed. It is quite 

tough to design specialized hardware. Machine Learning 

Applications with Diverse Algorithms demand specialized 

hardware and are more expensive than reconfigurable 

solutions. 

Computing paradigm research relies heavily on 

reconfigurable computing technologies. Reconfigurable 

computing provides performance and flexibility in gaining on 

a single computer system. The performance of the 

reconfigurable systems depends much on the management of 

configuration. Configuration Management improves the 

processing power in reconfigurable computing systems. 

Advanced control and management [8]strategies drive the 

progress of technology [9]. Configuration techniques facilitate 

innovation in multiple switching, partial reconfiguration, 

configuration cloning, and configuration pipelining-these are 

key efficient parameters of reconfigurable computing system 

As article states, reconfigurable computing is comprised 

of three key components: architectures, design 

methodologies, and applications. Modern architectural 

trends are focused on coarse-grained fabrics, heterogeneous 

functionalities, and soft cores. Coarse-grained fabrics use 

larger reconfigurable logic blocks that can process 

information more efficiently. Heterogeneous functionalities 

allow for greater customization and optimization of specific 

tasks. Soft cores leverage pre-existing processor architectures 

that can be adapted to meet the unique needs of applications 

like media processing, numerical computing, and embedded 

systems. 

Paper [9], [10]]examines the effect of FPGA embedded 

array topologies on their logic execution capability. This 

research is based upon several architectures having different 

sizes of memory arrays and evidences the heavy impact of 

heterogeneous architectures on logic implementations in 

contrast to single-size memory arrays. 

Zippy is a hybrid CPU that features a multi-context 

reconfigurable array and stands out for its built-in hardware 

virtualization capabilities. It utilizes a technique called 

virtualized execution for hardware virtualization. Study [11], 

[12]highlights a strategy known as temporal partitioning, 

while works [5-7] discuss advancements in digital electronics 

technologies, which have significantly enhanced computing 

power. In the field of AI, there is a strong focus on deep 

learning (DL) as a transformative area of research and 

application. 

The fundamental purpose of this work is to provide an 

efficient solution for embedded systems to improve 

computing performance and data-intensive applications, such 

as data gathering on mobile or embedded devices.  This 

unique optimized method for data extraction for embedded 

hardware architectures uses probabilistic principal component 

analysis (PPCA) [13], [14] . In this process, the true data is 

transformed into a new dataset while the key attributes remain 

unchanged. PCA [15] has previously been described in the 

literature. PCA has produced superior results. This PCA -

based data mining has been integrated into image processing 

of biometric data to improve efficiency and reduce memory 

access on embedded platforms. 
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The second portion of the work focuses on data recognition 

and classification for biometric images. This is the most 

efficient benchmark, which can be clarified using NN [8], 

[16]. This research investigates the Cascaded feed forward 

NN and deep NN as image processing models[16], [17], [18]. 

Accurate recognition of provided graphical objects should be 

robust to scale, translation, and rotation of the input [22]. To 

include these properties into a neural network, the algorithm 

selection must be appropriate.  

For the better understanding different metrices have been 

compared for PCA and other optimization techniques as well 

as proposed neural networks. The performance matrices 

which are needed for comparison has been listed as Metric 1-

6. Metric 1 is about Performance accuracy and  Metric 2  is 

the Latency which can be defined as time taken to process the 

data (in seconds or milliseconds). Metric 3 is basically 

memory usage which is basically usage over available 

memory.  Metric 4 is about Power consumption in watts or 

joules during data processing.  Metric 5 is nothing but  

(Overall Performance): Combined performance metric or 

computation efficiency.  The last but not the least is Metric 6 

(Execution Time): Time taken for the model to learn from the 

training data. 

The Key Considerations for calculating the above metrics 

are namely Dataset Characteristics, Application 

Requirements and Trade-offs. Dataset Characteristics can be 

defined as the choice of metrics depends on the specific 

dataset and the problem being addressed. Application 

Requirements means prioritize metrics that are most relevant 

to the application's needs (e.g., latency for real-time systems, 

energy efficiency for mobile devices). Trade-offs: defines  

between different performance metrics (e.g., accuracy vs. 

speed, accuracy vs. resource usage). By carefully selecting 

and tracking these metrics, you can effectively evaluate and 

compare the performance of PCA and various neural network 

architectures. The main research gap for embedded system is 

Robustness and Reliability [5], [19], [20]and the other one is 

the hardware-software co-design [21]. Efficient deployment 

requires co-optimization of hardware and software for 

embedded neural networks, though it is found in some 

literatures [22], [23], [24] 

The present authors have planned to resolve the problem. 

The feature extraction has been done with PCA which is 

already used but not for input of liquid neural network. In the 

work of [13], [25]  PCA is used but the application domains 

are different to check the efficacy.  On the other hand 

embedded system is basically domain-specific optimizations 

for embedded neural networks (e.g., biomedical devices, 

smart agriculture)[26], [27] Transfer learning methods for 

adapting pre-trained models to resource-constrained domains 

is a challenging task. 

Liquid neural networks (LNNs) are a promising approach 

to evaluate many of the challenges and research gaps 

identified in neural networks for embedded systems. Liquid 

neural networks are characterized by their adaptability and 

efficiency, making them well-suited for dynamic, resource-

constrained environments like embedded systems [28], [29], 

[30]. Liquid neural networks are designed to be sparse and 

adaptive, which inherently reduces the computational load 

compared to traditional neural networks like cascaded feed 

forward neural network (CFFNN), deep neural network 

(DNN) such as  [31]. The focal aim of the work to reduce the 

shortcomings of the above-mentioned methods and fill the 

research gap found. Under these circumstances, in this work 

the features has been extracted by PCA and then used it in the 

liquid neural network for better classification and optimize the 

algorithm for Deployment for FPGA-Based Embedded 

Systems. The following part of this study discusses the 

features and advantages of FPGA-based reconfiguration. The 

third part explored PCA based data mining, which were 

followed by the LNN, CFFNN and DNN algorithms in the 

fourth part. The fifth section is about the findings and ends 

with a conclusion. 
 

II.FPGA-BASED METHODS FOR RE-CONFIGURATION: 
A BRIEF ID 

Field-Programmable Gate Arrays (FPGAs) are versatile 

devices that can be reconfigured to implement various 

hardware functions. This flexibility makes them ideal for 

applications that require adaptability and dynamic behavior. 

FPGA-based reconfiguration techniques al-low for modifying 

the FPGA's functionality on-the-fly, enabling a wide range of 

applications. 

 The first classification pf FPGA is Partial Reconfiguration 

(PR). This method involves modifying a portion of the 

FPGA's configuration while the rest of the device remains 

operational. It also enables dynamic updates to specific 

hardware blocks without disrupting the entire system. 

Dynamic Partial Reconfiguration (DPR) which is another 

variety is basically a subset of PR that allows for 

reconfiguration while the FPGA is actively processing data 

which Offers greater flexibility and responsiveness compared 

to traditional PR. The third type is Behavioral 

Reconfiguration. This reconfiguration involves modifying the 

behavior of the FPGA by changing the control logic or data 

flow which can be achieved through: Reconfigurable logic 

blocks. Dynamically reconfigurable interconnects. 

Programmable look-up tables (PLUTs) which enables more 

radical changes to the FPGA's functionality compared to other 

Partial Reconfiguration. The for real-time face detection in a 

surveillance application has been taken into account for the 

FPGA program. 

 
III. SYSTEM DESIGN METHODOLOGY AND 
IMPLEMENTATION PLATFORM 

A hierarchical, platform-based design methodology is 

employed to facilitate component reuse and scalability. The 

system is structured into multiple levels of abstraction. This 

section deals with the implementation using the proposed 

methods. 
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 A. DESIGN METHODOLOGY 

The first one is Low-Level Operators which performs 

basically fundamental operations such as addition, 

subtraction, multiplication, division, square root, and 

comparison are defined as the base of the design hierarchy. 

Higher-Level Modules are mainly Computational modules, 

including Mean, Covariance Matrix, Eigenvalue Matrix, and 

Principal Component (PC) Matrix, are constructed by 

utilizing these low-level operators. Both hardware and 

software implementations of these operations are developed 

to ensure flexibility and performance optimization. 

B. IMPLEMENTATION PLATFORM 

 The current work can be classified into two work platforms, 

namely: Hardware Platform and Software platform. All 

experiments in hardware platform are conducted on the 

ML605 FPGA development board, which is equipped with 

the modules such as FPGA Device, on-chip resources, non 

volatile storage and clock as given in TABLE 1. 

TABLE 1 

                        Hardware Implementation platform details 

Module Name Specification 

FPGA Device 
A Xilinx Virtex 6 XC6VLX240T-

FF1156. 

On-Chip Resources 

37,680 slices for logic 

implementation. 

2 MB BRAM (Block Random 

Access Memory). 

512 MB external DDR3-SDRAM 

for handling large datasets. 

Non-Volatile Storage 

 

128 MB Platform Flash XL. 

32 MB BPI Linear Flash. 

2 GB Compact Flash for 

configuration bitstreams 

Clock 
Clock Speed: FPGA modules 

operate at 100 MHz. 

 

Hardware modules are designed using VHDL and 

Verilog. Verification of designs is performed using tools 

such as ModelSim SE, Xilinx ISim, and ChipscopePro 14.7. 

Design synthesis and implementation are carried out using 

Xilinx ISE 14.7 and XPS 14.7. Software Platform consists 

of Software modules which are executed on the MicroBlaze 

soft processor, synthesized onto the FPGA.     The soft 

processor is configured to run at 100 MHz and synthesized 

using the FPGA’s general-purpose logic. Unlike hard 

processors such as PowerPC, the MicroBlaze processor is 

synthesized to fit within the FPGA’s gate arrays. 

A. PERFORMANCE METRIC 

In an embedded system, "Speedup"  has been  discussed in Eq. 

1. is a metric used to evaluate the performance improvement 

offered by hardware over software. It is calculated by dividing 

the improved execution time achieved through hardware by 

the baseline execution time taken by the software as in Eq. 

1[13]. A higher speedup value indicates that the hardware 

implementation is more efficient compared to the software 

version. For instance, if a task takes 10ms in hardware and 

50ms in software, the speedup would be 5, meaning the 

hardware is five times faster. This metric helps in making 

informed decisions about whether to use hardware or software 

for specific tasks. 

 

Speedup =
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)    

Baseline xecution ime (Software)
(1) 

B. BENCHMARK DATASET 

The dataset contains 3823 records (vectors), each with 64 

attributes. Data includes 200 handwritten characters 

collected from 43 individuals. The details of ML605 FPGA 

development board, has been shown in FIGURE 1. The 

schematic diagram has been used in [13], [15] has been 

reused in this work to advocate the efficacy the proposed 

method. The synthesis has been carried away by hardware 

as well as the software platform. The output dataset of the 

system has been used for further work. PCA has been used 

 
 

FIGURE. 1. FPGA-Based Methods for Reconfiguration 
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here for feature extraction for the fingerprint data carried out 

using Xilinx ISE 14.7 and XPS 14.7. Software modules used 

are written in Python and executed on the MicroBlaze soft 

processor, synthesized onto the FPGA.  
 
IV. PCA BASED DATA MINING FOR EMBEDDED 
SYSTEM 

This section has been dealt with two different headers. The 

first section addresses the common features of PCA and the 

second part advocates about the application of PCA in the 

light of embedded system and the specific paradigm of PCA 

for the current application 

A. GENERALIZED PCA BASED DATA MINING 
 PCA is a preprocessing tool. This PCA version focuses 

on the best combination of variables to reduce data 

redundancy. It is applied to shrink large 

datasets obtained from tests, thereby minimizing information 

loss. An important feature of PCA 

is that it reduces dimensionality by grouping smaller datasets 

without altering the core information. 

 The motivation behind PCA is that smaller datasets are 

easier to explore, visualize, and analyze. This makes them 

suitable for neural networks and other machine learning 

algorithms by eliminating unnecessary variables, thus 

improving processing speed and reducing memory usage. 

PCA steps are given in Eq. (2-4)  [15], [21] . First step deals 

with the standardization of the Data. PCA is sensitive to the 

scale of data, so the first step is to standardize the dataset by 

scaling the features to have zero mean and unit variance. This 

ensures that each feature contributes equally to the analysis.  

 

Xscaled = X − μσ                                           (2) 

 

where: X is original data; μ is mean of the data; σ is standard 

deviation of the data. In the second step Covariance Matrix 

has been calculated to understand the relationships between 

different features in the dataset. The covariance matrix 

captures the variance and correlation between features. After 

that:  Performance of eigened composition on the covariance 

matrix has been done to extract its eigenvalues and 

eigenvectors.  eigenvalues represent the magnitude of 

variance along the principal components. Eigenvectors 

represent the direction of the principal components.  

The step deals with the selection of Principal component. 

The eigenvalues have been sorted in descending order and 

selected the top k eigenvalues and their corresponding 

eigenvectors. The selected components will explain the 

majority of the variance in the dataset. Explained Variance 

Ratio is calculated to decide how many components to 

retain:  

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 = ∑ 𝑗 = 𝑑𝜆𝑗             (3) 

where λi is the eigenvalue of the i-th component. The 

components are chosen so that such that the cumulative 

explained variance meets a desired threshold (e.g., 95%). 

In the last step data projected has been carried out Transform 

the original data onto the new k-dimensional feature space 

using the selected eigenvectors (principal components). 

XPCA = X ⋅ 𝑊X                    (4) 

where X is Standardized data; W is Matrix of selected 

eigenvectors (principal components) and the PCA is the 

principal component analysis. 

B. PCA FOR Embedded System 

As discussed, prior, Principal Component Analysis (PCA) is 

a commonly used technique for dimensionality reduction in 

multivariate statistical analysis. In the context of embedded 

systems, PCA can be particularly useful for handling large 

datasets from sensors or other input devices by reducing the 

amount of data that needs to be processed, stored, or 

transmitted. 

In this section, the mathematical model of PCA has been 

delved deeper. For high-dimensional data, Sparse PCA has 

been introduced here to reduce computational complexity 

while retaining essential features. Sparse PCA is considered 

for embedded device (e.g., a microcontroller or FPGA) that 

collects sensor data with hundreds of features. By applying 

Sparse PCA, the dimensionality of the data can be reduced, 

and the key features of interest can be preserved while using 

less computational power. The sparsity of the principal 

components will allow the system to handle operations like 

classification or anomaly detection more efficiently, since 

the sparse data representation leads to faster matrix 

operations and lower memory requirements.  

The mathematical modelling for Sparse Principal 

Component Analysis (Sparse PCA) involves an optimization 

problem that balances between maximizing explained 

variance and encouraging sparsity. Here’s a detailed step-

by-step process of how it can be implemented, particularly 

in the context of embedded systems. The goal is to find 

sparse principal components while retaining as much 

variance as possible. The sparse PCA problem can be 

formulated as in Eq.5 [15]. 

 

𝑚𝑎 𝑥 𝑊 ∈ 𝑅𝑝 × 𝑘                 s.t. |𝑊|0 ≤ 𝑠         (5) 

 

where X is the data matrix, W is the projection matrix 

(principal components), ∥ F ∥ denotes the Frobenius norm. ∥
𝑂 ∥ denotes the sparsity constraint (the number of non-zero 

elements), S is the sparsity level. In the context of embedded 

systems, Sparse PCA helps reduce the dimensionality of the 

data while maintaining meaningful features, making the data 

processing more efficient and suitable for hardware 

implementation constraints. The process involves balancing 

between retaining the maximum variance and ensuring that 

the principal components have sparse representations. This 

balance is crucial for optimizing performance and resource 

usage in embedded systems. Consequently, Sparse PCA can 

enhance real-time processing capabilities and prolong the 

lifespan of embedded devices. Moreover, the technique 

supports scalability, allowing the system to handle increasing 

amounts of data without significant performance degradation. 
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This makes Sparse PCA a powerful tool for modern 

embedded AI applications. Steps involved in Sparse PCA : 

 
V. LIQUID NEURAL NETWORK:  A BRIEF IDEA 

A Liquid Neural Network (LNN) is a type of recurrent 

neural network that processes data sequentially and 

continuously, adapting its structure based on new inputs. 

Unlike traditional neural networks, LNNs can handle 

variable-length inputs and maintain memory of past inputs, 

making them particularly effective for time-series data. 

Liquid Neural Networks (LNNs) are based on continuous-

time recurrent neural networks (CTRNNs) and are defined 

by differential equations. Here are some key mathematical 

equations and algorithms used in LNNs as in Eq.  (6,7) [31]. 

The first one is Ordinary Differential Equations (ODEs). 

Ordinary Differential Equations (ODEs) are a type of 

equation used to describe the behavior of dynamic systems. 

In the context of a network, the state of the system is 

represented by the state vector xx, which changes over time. 

The state of the network is described by a set of ODEs: 
𝑑𝑥

𝑑𝑡
= f(𝑥, 𝑢, 𝑡)                         (6)                                                                                         

Eq. (6,7)[31] defines the rate of change of the state vector 

x(.) with respect to time t. In this equation, u(.) represents the 

input vector that influences the system, and f(.)is a nonlinear 

function that relates the state and input vectors to the rate of 

change of the state. This nonlinear function encapsulates the 

dynamics of the network and governs how the state evolves 

over time in response to inputs. The second method in this 

aspect is Runge-Kutta Methods. For solving ODEs, methods 

like the Runge-Kutta (RK) method are often used: 

  xn+1  =  xn  +  Δ t  ⋅  k       (7)                   

where k is the RK coefficient calculated based on 

intermediate steps t . Liquid Neural Networks (LNNs), such 

as Liquid Time-Constant Networks (LTCs), are 

mathematically grounded in the use of differential equations 

to model the dynamics of neurons and their changing 

behavior over time. Here’s a breakdown of the core 

equations that describe LNNs. Core Neuron Dynamics 

evolves over time according to a system of ordinary 

differential equations (ODEs) as in Eq. (8)[31]. 

 

dh(t)dt = f(h(t), x(t), W, θ)                            (8) 

 

where h(t) is the hidden state of the neuron at time t.,x(t). 

The input signal at time t,W: Weight matrices (input-to-

hidden and hidden-to-hidden connections). θ: Parameters 

defining the dynamics (e.g., time constants, biases),f: A non-

linear function that governs the evolution of the system. 

Liquid Time-Constant Networks, the key idea is that the 

time constants of the neurons vary dynamically. The ODE 

for each neuron can be stated as Eq. (9,10) [31]. 

 

dhi(t)/dt = −hi(t) + g(W ⋅ ℎ(t) + U ⋅ 𝑥(t) + b)  (9) 

 

where hi(t) is the state of the i-th neuron at time t, τi(⋅). The 

time constant for the i-th neuron, which is a function of the 

neuron state and input. g(⋅): The activation function (e.g., 

sigmoid, tanh, ReLU). W: The recurrent weight matrix. U: 

The input weight matrix. b: The bias term. The liquid 

property comes from the time constants τi, which can vary 

non-linearly based on the neuron’s state and input. 

Neuron time constant dynamics τi are modeled by the 

state h(t) and input x(t). Parameters α and β control the time 

constant's range, while the sigmoid function σ ensures τi 

remains positive. Weights v and w adjust contributions from 

the state and input. 

 

𝜏𝑖(ℎ(𝑡), 𝑥(𝑡)) = 𝛼 + 𝛽 ⋅ 𝜎(𝑣⊤ℎ(𝑡) + 𝑤⊤𝑥(𝑡) (10)   

   

where α,β are parameters controlling the range of the time 

constant, σ(⋅) is a sigmoid function to ensure τi stays 

positive, v,w are learnable weights for the state and input 

contributions. The overall output y(t) of the network is 

computed using the hidden states. 

 

𝑦(𝑡) = ℎ𝑜𝑢𝑡𝑝𝑢𝑡                     (11) 

 

where houtput(⋅) is the readout function, which could be a 

simple linear transformation or another non-linear mapping 

as in Eq. (11) [31]. For the sake of discretization for 

Computation, in practice, these continuous ODEs are solved 

numerically using time-stepping methods (e.g., Euler or 

Runge-Kutta). For a small time step Δt, the hidden state 

update becomes: 

 

ℎ(𝑡 + 𝛥𝑡) = ℎ(𝑡) + 𝛥𝑡 ⋅ 𝑑ℎ(𝑡)                              (12) 

 

where 𝑑ℎ(𝑡/)𝑑𝑡  is calculated using the above ODE 

equations as in Eq.  (12)[28], [31]. The last step is Training 

Liquid Neural Networks. Training LNNs involves 

backpropagation through time (BPTT) or adjoint sensitivity 

Input: Data matrix 𝑋 ∈ 𝑅𝑛×𝑝  , Sparsity parameter 

s>0s > 0s>0 

Step 1: D  Compute the mean μ of each feature in the 

dataset X and center the data  

Xcentered=X−μ      

        

Step 2: Compute Covariance Matrix C for ‘ n’ no. of 

data 

C = 
1

n-1
 Xcentered

T  Xcentered 

Step 3: Use convex relaxation techniques like Lasso to 

encourage sparsity in the solution W, where sss 

controls the sparsity level. 

 trace(𝑊𝑇𝐶𝑊) s.t. |𝑊|1 ≤ 𝑠 

Step 4: Iterative Algorithms Repeatedly compute the 

principal components with a threshold to enforce 

sparsity 

Step 5:Repeat until convergence. The final W contains 

sparse principal components that highlight key 

features. 
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methods (for efficient computation with ODEs. These LLN 

equations capture the fundamental behavior of Liquid 

Neural Networks and their adaptability, making them 

powerful for tasks requiring dynamic, real-time responses to 

evolving inputs. The details flowchart has been discussed in 

FIGURE 2. 

 
FIGURE 2. Flowchart for Liquid neural network 

VI. PROPOSED ALGORITHM OVERVIEW 

To optimize FPGA-based embedded systems, start with data 

collection from sensors. Preprocess data using 

normalization, as in Eq.13 [28], [30]. Apply PCA by 

computing covariance matrix performing eigen 

decomposition and selecting top components Design a 

Liquid Neural Network (LNN) with an input layer and 

readout layer (Eq. 18). Optimize hardware by applying 

quantization, parallel processing, efficient memory storage, 

and reducing power consumption. Finally, deploy and 

evaluate the model. Combining PCA and LNN ensures fast, 

power-efficient AI processing suitable for embedded 

applications. The algorithm can be classified into five steps 

which have been elaborated in this section. At first, data X 

has been collected from embedded system sensors Data 

Preprocessing has been performed as in Eq. (13) [31] to 

normalize it. For feature extraction, Principal Component 

Analysis (PCA) are discussed in Eq.  (14-16) [31], [32]. First 

the covariance matrix has been computed as in Eq. 13 

[29]where it scales each feature of the dataset X to a range 

between 0 and 1 using min-max normalization. Covariance 

matrix has been calculated and eigen value decomposition 

also performed as in Eq. 14 [30] where covariance matrix C  

has derived from the normalized data X′ where n is the 

number of data points (rows).  Eq. 15 [33], eigen 

decomposition of the covariance matrix C. V contains eigen 

vectors (principal directions or axes). Λ is a diagonal matrix 

with eigen values .The top principal components PC have 

been selected using Eq.16 [28], [30]. by multiplying the 

normalized data X′ by the top k eigenvectors Vk (columns of 

V) 

          𝑋′ =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
                                    (13) 

          C =
1

𝑛−1
𝑋′𝑇𝑋′                                          (14) 

 C = VΛ𝑉𝑇                                               (15) 

PC = 𝑋′𝑉𝑘                                              (16) 

After successful feature extraction Liquid Neural Network 

(LNN) have been employed successfully. The steps for 

liquid neural network have been discussed as in Eq. (17-19) 

[30]. As discussed in prior section the steps of LNN are as 

follows (ALGORITHM 1): 

ALGORITHM 1: Steps of LNN 

Input Layer: Embed reduced data: 

     u(𝑡) = PC                                                  (17) 

 

The input signal u(t) is the result of projecting your original 

data onto principal components (PC). This is a dimension-

reduced representation of the data. 

Reservoir: Process data: 

 

 𝑥(𝑡 + 𝛥𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                (18) 

 

where,  x(t) is the reservoir’s internal state at time t. 

A is the reservoir weight matrix, dictating how the current 

state evolves.  B maps the input signal u(t) into the reservoir.   

The reservoir captures temporal and nonlinear dynamics of 

the input data. 

 

Readout Layer: Map reservoir states     

                             𝑦(𝑡) = 𝐶𝑥(𝑡)                                   (19) 

The reservoir’s internal state x(t) is mapped to the output y(t) 

using matrix C 

Optimization: Use y(t) to optimize embedded system 

parameters. 

Evaluation: Assess performance and iterate if necessary. 

  

 

The parallel processing has been employed to accelerate 

computations. The main aim of using PCA induced LNN to 

FPGA is to reduce power consumption through weight 

pruning and sparsity strategies. By combining PCA and 

LNN, this approach enables fast, power-efficient neural 

network processing, making it ideal for embedded AI 

applications. 
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A. THE SELECTION OF PARAMETERS FOR A PCA-

BASED LIQUID NEURAL NETWORK (LNN) 

In FPGA-based embedded systems is crucial to achieving a 

balance between performance, resource efficiency, and 

accuracy. Key parameters which have been used in this 

current work has been jotted down in this work. The first one 

is PCA Parameters. A typical choice is to retain 90-95% of 

the data variance, ensuring that important features are 

preserved while reducing computational load. The second 

important parameter is Sparsity Regularization Parameter 

(λ). In Sparse PCA, the regularization parameter λ controls 

the sparsity of the principal components. A higher λ 

increases sparsity, reducing resource usage by eliminating 

less important features. The another Neural Network 

Parameters is Learning Rate (α) which governs the 

magnitude of weight updates during training. A rate between 

0.001 and 0.01 is commonly selected. The other parameter, 

batch size determines the number of samples processed 

together in one pass during training. Typically, values of 16 

or 32 are selected for embedded systems to balance memory 

usage and parallelism on the FPGA. Larger batch sizes 

improve parallel computation, while smaller sizes reduce 

memory load. 

For FPGA systems, LNNs typically have fewer layers and 

neurons to optimize resource usage. A shallow architecture 

with 20-100 neurons per layer is commonly chosen. While 

more layers improve model capacity, they increase resource 

demands, so fewer layers are selected for better efficiency. 

Quantizing weights and activations to 8-bit or 16-bit 

precision reduces memory and computational overhead on 

FPGA hardware. While lower bit-widths reduce resource 

usage, excessive quantization may reduce accuracy. 

For the sake of Activation Parallelism, the ReLU activation 

function is commonly used due to its computational 

simplicity, essential for efficient FPGA implementation. 

The parameters of the PCA-based LNN are selected to 

reduce FPGA resource usage while maintaining high 

accuracy, achieving 98.3% accuracy and 98% F1 score in 

simulation results. These choices optimize the network for 

embedded, real-time systems. 

FIGURE 3 showed here gives the UML diagram of the 

proposed method as this diagram clearly visualizes system 

architecture and design, aiding efficient communication and 

understanding among stakeholders. This diagram effectively 

outlines the relationships between different system modules, 

their interactions, and data flow, making it easier for 

developers, analysts, and other stakeholders to understand 

the system’s functionality. A key feature of LNNs is the 

Time-Dependent Feedback Loops, allowing continuous 

learning and adaptation. The Online Learning mechanism 

refines the network using Liquid Dynamics, which ensures 

flexible, real-time responses. Feedback from the output 

refines the learning process iteratively. Finally, the network 

produces results through the Output Layer, completing the 

adaptive neural processing cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 

 
 
 

 
 
 
 
 

 
FIGURE 3. UML Diagram of proposed method 

 

It starts with the Dataset, which provides data to the PCA 

Processor for feature reduction. The processed features are 

passed to the Liquid Neural Network, which consists of 

Neurons for computation. The trained model is deployed to 

an FPGA Controller, which executes predictions and 

provides feedback. The results are evaluated by the Results 

Evaluator, which assesses accuracy and generates reports. 

This system highlights a structured approach to real-time, 

adaptive learning using FPGA hardware acceleration for 

neural network execution and performance improvement. 
 

VII. RESULTS 
The different stages of PCA calculation for feature 

extraction and dimensionality reduction include the first 

stage (mean calculation), the second stage (Covariance 

Matrix), the third stage (Eigenvalue Matrix), and the fourth 

stage (Principal Component Matrix). The mathematical 

details have been discussed in TABLE 2. 
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TABLE 2 

Summary of PCA Stages 

PCA involves multiple steps to reduce dimensionality. 

Firstly, mean calculation centers the data by subtracting the 

mean from each feature. Secondly, the covariance matrix is 

computed to understand relationships between features. 

Thirdly, eigen decomposition identifies principal directions 

(eigenvectors). Finally, the projection stage. transforms the 

data into a lower-dimensional space. This process simplifies 

complex datasets, making them easier to analyze and 

visualize while preserving essential information. 

These stages have been experimentally tested as separate 

entities, with different vector counts and data sizes. A Monte 

Carlo simulation with 100 executions for each stage. The 

average execution time is given.  In TABLE 3, a Monte 

Carlo simulation with 100 executions for each stage. The 

average execution time is given. It   presents a comparison 

of execution times across all four stages with and without 

PCA. It also shows the Computation time for PCA and 

without PCA of four stages.  

This table highlights the average execution times for each 

stage, demonstrating the impact of PCA on computation 

time. By incorporating PCA, we observe the efficiency in 

processing, as important features are retained while reducing 

the computational load. The comparison showcases the 

benefits of using PCA in optimizing performance in 

embedded systems. 

In TABLE 3, a Monte Carlo simulation with 100 

executions for each stage. The average execution time 

is given. It   presents a comparison of execution times across 

all four stages with and without PCA. It also shows the 

Computation time for PCA and without PCA of four stages.  

TABLE 4 provides insights into the trade-offs and 

benefits of dimensionality reduction versus raw data 

processing. Each of these techniques has its unique 

applications and strengths in handling and transforming data 

for better analysis and interpretation. 

Principal Component Analysis) is a statistical technique 

used to reduce data dimensionality by transforming variables 

into a smaller set of uncorrelated principal components, 

capturing most of the original data’s variance. PPCA 

(Probabilistic Principal Component Analysis) extends PCA 

by introducing a probabilistic model, allowing for robust 

handling of missing data and noise, making it useful in 

various real-world scenarios. ICA (Independent Component 

Analysis) focuses on separating a multivariate signal into 

independent components, often employed in signal 

processing to isolate mixed signals, such as separating audio 

sources in a recording. SVD (Singular Value 

Decomposition) is a matrix factorization method that 

decomposes a matrix into three other matrices, providing 

valuable applications in noise reduction, image 

Stage Description Mathematical Operation 

1.Mean 

Calculation 

Centering data by 

subtracting mean 

from each feature. 

𝑋′ = 𝑋 − 𝜇𝑋′ 

μX represents the mean of 

each column (feature) in the 

data matrix X 

2.Covariance 

Matrix 

Computing 

relationships 

between features. 

𝐶  =  
1

𝑚 − 1
 𝑋′𝑇  𝑋 ′𝐶 

This computes the covariance 

matrix C of the centered data 

X′, where m is the number of 

samples  

3.Eigen 

Decomposition 

Finding principal 

directions 

(eigenvectors). 

𝐶𝑉 = 𝜆𝑉 

Solving it gives eigenvectors 

V and eigenvalues λ 

4. Projection Transforming data 

into lower-

dimensional space. 

𝑋𝑛𝑒𝑤 = 𝑋′𝑊𝑋 

W is the projection matrix 

TABLE 3 
Comparison of stages 

 

 

 

Data 

 

                                                                    Comparison of stages 

Stage 1 Stage 2 Stage3 Stage 4  

Without 

PCA 

PCA Without 

PCA 

PCA Without 

PCA 

PCA Without 

PCA 

PCA Without 

PCA 

PCA 

20K .9365 .9355 6.15 6.07 1.803/ 

332 

1.659/232 1.203 1.118 1.8230 1.7843 

40K 1.075 1.795 12.31 12.19 1.271 / 

235 

1.270/235 2.50 2.32 14.325 15.084 

60K 1.575 1.795 12.31 12.19 1.271 / 

235 

1.270/235 2.50 2.32 14.325 15.084 

80K 1.95 1.795 12.31 12.19 1.271 / 

235 

1.270/235 2.50 2.32 14.325 15.084 

100K 2.807 2.738 18.45 18.23 1.402 / 

258 

1.399 / 257 3.61 3.58 21.192 24.327 

120K 4.28 2.9 38.45 383 1.402 / 

258 

1.567 / 288 3.961 3.58 31.65 32.47 

 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 2, April 2025, pp: 431-449;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                       440               

compression, and solving linear equations efficiently. Each TABLE 4 
Comparison Table for different metrics 

Data 

Points 

Method Accuracy Latency (ms) Memory Usage 

(used/available) 

Energy 

(Watts) 

Performance 

Metric 

20K No 

Reduction 

0.9410 8.20 2.415 / 332 1.420 1.7320 

PCA 0.9355 6.07 1.803 / 331 1.118 1.7843 

PPCA 0.9378 6.45 1.842 / 331 1.201 1.8654 

ICA 0.9402 7.15 1.954 / 330 1.325 1.7453 

SVD 0.9340 6.12 1.812 / 332 1.143 1.7600 

60K No 

Reduction 

1.795 22.15 3.140 / 235 3.42 14.221 

PCA 1.795 12.19 1.270 / 235 2.32 15.084 

PPCA 1.812 12.60 1.321 / 235 2.57 15.612 

ICA 1.839 13.18 1.419 / 234 2.81 14.784 

SVD 1.783 12.24 1.294 / 235 2.43 14.912 

100K No 

Reduction 

2.795 41.23 4.123 / 257 4.90 21.000 

PCA 2.738 18.23 1.399 / 257 3.58 24.327 

PPCA 2.761 18.61 1.431 / 256 3.72 24.821 

ICA 2.784 19.30 1.562 / 255 4.01 23.512 

SVD 2.734 18.35 1.405 / 256 3.62 24.300 

 
TABLE 5 

Statistical Analysis 

Metric 

 

(PCA+LNN vs. CFFNN) (PCA+LNN vs. DNN) (PCA+LNN vs. LNN) 

Dataset 

Range 

(Samples) 

Mean 

Difference  

t-Value  p-

Value 

Mean 

Difference  

t-Value  p-

Value 

Mean 

Difference  

t-Value 

( 

p-

Value 

0 - 20K +4.7 16.5 <0.01 +3.0 14.8 <0.01 +1.2 9.69. <0.01 

20K - 40K +4.3 15.8 <0.01 +2.88 14.1 <0.01 +1.1 9.39 <0.01 

40K - 80K +4.1 15. 5 <0.01 +2.5 13.9 <0.01 +1.0 9.19. <0.01 

80K - 120K +4.6 16.3 <0.01 2.3 13.5 <0.01 +0.8 8.78. <0.01 
 

 
TABLE 6 

Clock for different attributes comparison 

Attributes 
PCA enhanced LNN CFFNN DNN 

(in clks) (in clks) (in clks) 

Clock cycles for segmenting one large receptive 

field (St) 
2612 2497 2520 

Clock cycles for calculating one large receptive 

field (Ct) 
710 682 703 

Feed forward layer clks for each image (Ft) 302 294 300 

Clock cycles for processing one image. 33212 318494 32434 
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of these techniques offers unique advantages for 

transforming, analyzing, and interpreting complex data, 

enhancing overall data processing and decision-making. 

Here’s a detailed comparison of system performance with 

and without dimensionality reduction techniques (PCA, 

PPCA, ICA, SVD) and without reduction for the provided 

data. TABLE 4 presents a comprehensive comparison of     

various dimensionality reduction techniques: PCA, PPCA, 

ICA, and SVD—against no reduction across different 

dataset sizes (20K, 60K, and 100K data points). Key 

performance metrics such as accuracy, latency, memory 

usage, energy consumption, and overall performance metric 

are evaluated. For smaller datasets (20K), no reduction 

yields the highest accuracy (0.9410), but with higher latency 

and energy usage compared to PCA and SVD. On the other 

hand, processing raw data preserves the full complexity and 

detail of the original dataset, which might be crucial for 

certain models or analyses that rely on the richness of the 

data. However, it may lead to higher computational costs and 

the risk of overfitting due to the curse of dimensionality. 

Each technique has its unique applications such that 

Dimensionality reduction is valuable in visualization, 

preprocessing, and model optimization. Raw data processing 

is essential where feature interpretability and full data 

fidelity are critical. raw data processing ensures that no 

information is lost, allowing for more detailed analysis and 

 
FIGURE 4. Comparison of total clock cycle for four stages w.r.t  

 

 
 

FIGURE 5. Comparison of total execution clock cycle w.r.t data  

 
FIGURE.6. Comparison F1 score 
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greater interpretability of features, which is crucial for 

applications where understanding the influence of each 

variable is necessary.  Overall, dimensionality reduction 

enhances computational efficiency, particularly in memory-

constrained and energy-sensitive environments, while still 

maintaining competitive performance. These insights 

highlight the trade-offs between raw data processing and 

reduced-dimensional data for scalable machine learning 

systems. This is applicable for smaller reduction. The graph 

in FIGURE 4 compares different dimensionality reduction 

techniques' effects on computation time ("Clock") as data 

size increases. "No PCA" has the highest time growth, 

indicating inefficiency with large datasets. SVM performs 

better but still scales significantly. ICA, PCA, and PPCA 

(exhibit much lower computational times, showing that 

dimensionality reduction improves efficiency. Among them, 

PCA and PPCA appear to perform the best in reducing 

computational load. The x-axis represents data, and the y-

axis represents computation time and execution cycle 

respectively. The results highlight that PCA-based methods 

significantly reduce processing costs compared to no 

dimensionality reduction. The graph shows in FIGURE 5 

execution time against data size (in millions) for different 

methods. "No PCA" (blue) exhibits the highest 

computational cost, increasing steeply with data size. SVM 

also scales significantly but remains lower. ICA, PCA, and 

PPCA show much lower execution times, with PCA-based 

methods being the most efficient. The trend highlights that 

dimensionality reduction techniques, particularly PCA and 

PPCA, significantly improve computational efficiency, 

making them ideal for handling large datasets while 

reducing processing time. The TABLE 5 analysis 

statistically the comparison of proposed method with 

existing ones TABLE 6 suggests. The PCA-enhanced LNN 

has slightly higher segmentation (St) and calculation (Ct) 

times but a lower feedforward layer time (Ft). Overall, the 

PCA-enhanced LNN processes an image in 33,212 clock 

cycles, which is slightly higher than the DNN (32,434) but 

significantly lower than CFFNN (318,494), demonstrating 

improved efficiency in feedforward computations. In 

TABLE 6, clk defines as the clock period time(1/50MHz=20 

ns in FPGA - XC3S200)   where N is number of large 

 
FIGURE.7. Comparison of energy consumption (in logarithmic scale), w.r.t time. 

 

 
FIGURE.8. Execution time speed up for no. of features for PCA+LNN  
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receptive fields in one image.   This section deals with the 

comparisons of the data estimation accuracy precision and 

F1 score. LNNs excel at handling sequential data, making 

them ideal for tasks like embedded system applications. 

FIGURE 6-8 shows the comparison metrics for neural 

network paradigms. The bar of FIGURE 6 compares F1 

scores and accuracy of three paradigms across different data 

sizes. LNN consistently achieves the highest scores, 

followed by DNN, while CFFNN performs the lowest. As 

data size increases, all models improve in performance. The 

trend suggests that LNN is the most effective model, while 

DNN also performs well. CFFNN lags behind but still shows 

improvement with larger datasets. The bar chart of FIGURE 

6 also presents accuracy comparisons for different models 

across varying data sizes.  As data size increases, accuracy 

improves across all models. LNN remains the most 

effective, exceeding 98% accuracy in most cases. DNN also 

performs well, maintaining a steady increase. CFFNN lags 

but still benefits from larger datasets. The results highlight 

LNN’s superior performance and scalability for high-

accuracy tasks. FIGURE 7 shows the energy consumption 

Energy consumption in embedded systems using neural 

networks is a critical consideration. Several factors impact 

energy consumption, including the complexity of the neural 

network, hardware architecture, and optimization 

techniques. FIGURE 8 discusses about the time taken for 

 
FIGURE.9 F1 score with respect to data range 

 

 
FIGURE.10 F1 score vs Std. Deviation of data range 
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execution for proposed method with respect to sample 

variations. As the number of features increases, execution 

time rises steadily, indicating a linear or near-linear growth 

pattern. This suggests that higher feature dimensions require 

more computational resources. Efficient feature selection 

can help optimize performance and reduce processing time. 

Froom the above figure, it can be illustrated that the 

relationship between execution time (in milliseconds) and 

the number of features. As the number of features increases, 

execution time grows consistently, suggesting a linear or 

near-linear trend. The lowest execution time is observed at 

the smallest feature count, while the highest execution time 

is recorded at 500 features. This trend highlights the 

computational cost associated with handling higher-

dimensional data.  

In machine learning and data processing, an increase in 

feature count often leads to higher complexity, requiring 

more processing power and time. This emphasizes the 

importance of feature selection and dimensionality reduction 

techniques, such as PCA or feature pruning, to optimize 

performance. Without proper feature selection, excessive 

feature counts can lead to inefficiency and increased 

computational overhead.  

In this work, different data complexity and Confidence 

Interval Comparison (F1 Scores) for low value as well as 

high value level for the proposed methods has been 

implemented. With increasing feature dimensionality, 

CFFNN and DNN exhibit significant performance 

degradation due to feature redundancy and noise. PCA-

enhanced LNN mitigates this issue, achieving an F1 score of 

95.6% even at 500 features by retaining only the most 

critical dimensions. In the view of PCA Execution Time, 

scales vary linearly with feature dimensionality, increasing 

from 0.8 ms (10 features) to 8.9 ms (500 features). This 

processing time remains manageable for real-time 

applications when combined with FPGA acceleration. By 

incorporating incremental PCA, the system can efficiently 

handle datasets exceeding the memory capacity of the FPGA 

by processing data in smaller chunks without sacrificing 

performance. 

The FPGA design supports parallel computation for PCA 

and LNN components, enabling scalable performance as 

datasets grow in size or complexity. For datasets larger than 

the FPGA’s memory, the proposed method can split the data 

into smaller partitions, apply PCA on each, and then merge 

the reduced feature sets for final processing. For extremely 

large-scale data, the system can be adapted to multi-FPGA 

architectures, where the PCA and LNN workloads are 

distributed across multiple devices. The Proposed PCA-

enhanced LNN demonstrates excellent scalability across 

increasing dataset sizes and feature complexities. For 

datasets up to 120K samples and 500 features, it consistently 

delivers high F1 scores (up to 98.2%) with manageable 

resource utilization and latency. With additional 

optimizations like incremental PCA or distributed 

processing, the method can handle even larger and more 

complex datasets, making it highly suitable for next-

generation embedded systems. The bar chart in FIGURE 9 

compares the F1 scores of four models—CFFNN (blue), 

DNN (orange), LNN (gray), and PCA-enhanced LNN 

(yellow)—across different dataset sizes. PCA-enhanced 

LNN consistently achieves the highest F1 scores, 

demonstrating the effectiveness of dimensionality reduction. 

LNN also performs well, outperforming DNN and CFFNN. 

DNN shows moderate performance, while CFFNN has the 

lowest F1 scores. As dataset size increases, all models 

improve, but PCA-enhanced LNN maintains a clear 

advantage. This highlights the impact of PCA in boosting 

model efficiency and accuracy, making it a valuable 

technique for enhancing machine learning performance with 

large datasets. 

The graph in FIGURE 10 shows the effect of standard 

deviation on F1 scores for four models: CFFNN (blue), 

DNN (orange), LNN (gray), and PCA-enhanced LNN 

(yellow). PCA-enhanced LNN consistently achieves the 

highest F1 scores, followed by LNN, DNN, and CFFNN. As 

standard deviation increases, F1 scores generally decline 

across all models, indicating that higher variability 

negatively impacts performance. However, PCA-enhanced 

LNN remains the most stable, showing minimal 

performance degradation. This suggests that PCA improves 

robustness against data variability, making it a valuable 

technique for maintaining model accuracy in noisy or 

uncertain datasets. FIGURE 9 and 10 describes the F1 score 

comparison with respect to data range and data standard 

deviation. From both the plots it can be concluded that 

proposed PCA enhanced LNN works better in embedded 

system. 

 

VIII. DISCUSSION 

The main implication of this current work has been rewritten 

here.In this study, the PCA (Principal Component Analysis) 

algorithm has been utilized to explore dynamic solutions for 

embedded hardware systems specifically designed for 

probabilistic principal component analysis. PCA was chosen 

as the initial method in this research, and its performance has 

been compared with the cases. 

 During the initial phase of the study, an investigation 

was conducted on dynamic embedded platforms, 

particularly focusing on image-processing-based FPGAs. 

The performance of PCA was evaluated across various 

stages of dynamic execution, including mean covariance 

computation, eigenvalue decomposition, probabilistic 

principal component calculations, and total clock usage. 

The total execution time was calculated by summing the 

durations of the aforementioned four stages. The results 

demonstrated a significant speedup with the selected 

embedded architecture. Additionally, the proposed 

reconfigurable embedded system design achieved 

approximately 92% area savings compared to older designs 

that relied on static hardware.  A novel LNN (Liquid neural 

network), CFFNN (Cascade Forward Feed Neural Network) 

and deep learning algorithm were successfully implemented 

in this study for handling unstructured data. These were 
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integrated into a comprehensive reconfigurable FPGA-

based architecture, supporting runtime operations and 

dynamic distribution across multiple accelerators. With the 

propagation of embedded devices , portable and/ or mobile 

technology, data mining based applications have initiate 

their mode in this strategies. More likely they are kinds of   

computationally complex and data privacy which are 

extermely intensive applications needs to  construct vast 

amount of information with multifaceted algorithms. 

 
A. COMPARATIVE STUDY OF PREVIOUS LITERATURE 

To contextualize the proposed PCA-enhanced Liquid 

Neural Network (LNN) framework for FPGA-based 

embedded systems, a comparative analysis of previous 

literature is presented. The evaluation focuses on three key 

dimensions: neural network architecture, optimization 

techniques, and deployment on FPGA platforms. 

Cascaded Feedforward Neural Networks (CFFNNs): 

Previous studies have widely used CFFNNs in FPGA-based 

applications due to their straightforward design and 

relatively low computational requirements. While CFFNNs 

provide reasonable performance for basic tasks, they lack 

adaptability to dynamic inputs and become inefficient for 

complex, high-dimensional data processing. 

DNNs have been the most commonly used architectures 

in FPGA implementations due to their superior accuracy 

across a wide range of applications. However, DNNs are 

computationally intensive and require significant memory 

and processing resources, making them unsuitable for 

resource-constrained embedded systems. Studies have 

explored hardware-aware optimizations like pruning and 

quantization to mitigate these issues, but their complexity 

remains a challenge. 

Recent literature highlights the adaptive and 

computationally efficient nature of LNNs, making them 

particularly suitable for real-time and embedded 

applications. Unlike DNNs and CFFNNs, LNNs 

dynamically adjust their internal state based on input, 

enabling efficient processing of time-series or dynamic data. 

However, prior to this work, LNNs had not been extensively 

optimized for FPGA deployment or integrated with 

dimensionality reduction techniques like PCA. 

 Existing studies have extensively utilized pruning and 

quantization to reduce the resource requirements of neural 

networks. These techniques simplify network architectures 

by eliminating redundant weights and reducing numerical 

precision. While effective for static networks like DNNs and 

CFFNNs, these methods do not exploit the dynamic 

properties of LNNs, limiting their applicability to certain use 

cases. 

PCA has been studied for reducing input data 

dimensionality in machine learning applications, but its 

integration into FPGA-based neural network systems has 

been limited. Previous works have demonstrated that PCA 

reduces computational overhead without significant loss of 

accuracy, making it a promising addition to neural network 

optimization. This study is among the first to apply PCA in 

the context of FPGA-optimized LNNs, combining data-level 

reduction with architectural adaptability for improved 

performance. Traditional FPGA-Based Neural Networks: 

Earlier systems deploying CFFNNs and DNNs on FPGAs 

focused on improving throughput and energy efficiency by 

leveraging the parallel processing capabilities of FPGAs. 

Despite these efforts, the high resource demands of DNNs 

often limited scalability, particularly for edge and embedded 

systems. Recent studies  have incorporated hardware-aware 

design principles to enhance the performance of FPGA-

based networks, such as resource allocation optimization, 

parallelism, and pipeline design. However, many of these 

approaches target static networks and do not leverage the 

dynamic properties of newer architectures like LNNs. 

TABLE 8 

 Key Findings from Comparative Analysis 

Aspect CFFNN DNN PCA enhanced 

LNN (Proposed 

Framework) 

Adaptability Low Medium High 

Coutational 

Complexity 

Low High Medium 

Energy 

Efficiency 

Moderate Low High 

Scalability Moderate Limited(due to 

resource needs) 

High 

FPGA 

Resource 

Utilization 

Efficient Resource-

intensive 

Highly Efficient 

Use of PCA Rare Limited Integrated for input 

optimization 

B.  CURRENT WORK'S CONTRIBUTION 

The PCA-enhanced LNN framework stands out by 

combining adaptive neural network architecture with 

dimensionality reduction and hardware-aware 

optimizations. Compared to existing FPGA-based 

implementations of CFFNNs and DNNs, the proposed 

system achieves significantly lower latency, higher energy 

efficiency, and better resource utilization, making it ideal for 

real-time embedded applications. TABLE 8 gives the idea of 

Key Findings from Comparative Analysis in a glance 

whereas TABLE 9 discusses the comparison of previously 

published paper. In these work of TABLE 8, different metric 

has been considered.  

The TABLE 9 compares various metrics for different 

paper like Wu et al. 2024 [34], Gao et al. [35]2023, Bachana 

2023[13], and the Proposed PCA-enhanced LNN. The 

Proposed PCA-enhanced LNN outperforms others in F1 

Score (98.20%), Accuracy (98.30%), and Latency which  is 

2.9 ms. It can be compared also in terms of  FPGA resource 

utilization, Efficiency, dimensionality handling etc. It shows 

the least FPGA resource utilization (55% LUTs, 50% 

BRAM), highest energy efficiency (5.4 FLOPS/W), 

excellent scalability, and superior dimensionality handling 

due to PCA. It is ideal for real-time edge intelligence with 
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large datasets, while other methods vary in performance and 

application domains from small to medium-scale embedded 

systems and real-time edge intelligence. This study builds on 

the strengths and addresses the limitations of prior work by 

integrating PCA with LNNs for FPGA deployment. Unlike 

CFFNNs and DNNs, the proposed framework effectively 

balances adaptability, computational efficiency, and 

hardware resource utilization, establishing a new benchmark 

for high-performance neural network deployment in 

embedded and edge environments. 

C. CHALLENGES FACED DURING PCA 

IMPLEMENTATION IN EMBEDDED SYSTEMS  

Dimensionality-Reduction Trade-offs: Reducing 

dimensions with PCA may cause minor accuracy loss, while 

its eigenvalue decomposition is computationally expensive 

for large datasets. Storing the covariance  

matrix and intermediate results can exceed memory 

constraints, and performing PCA in real-time can introduce 

latency. However, PCA improves system performance in 

terms of memory usage, latency, and energy consumption 

while maintaining comparable accuracy, especially for large 

datasets in embedded systems with constrained resources. 

PCA proves more scalable than raw data processing as 

dataset size increases, ensuring efficient handling of larger 

workloads in embedded systems. While the PCA-enhanced 

LNN scales well to large datasets, scaling could potentially 

increase latency. However, the proposed approach shows 

exceptional latency (2.9 ms) for a 120K sample dataset, 

suggesting it is optimized for FPGA. Hardware-aware 

optimizations like parallel processing or quantization could 

further reduce latency without sacrificing scalability. PCA-

enhanced LNN offers significant advantages over traditional 

models like CFFNN or DNN, which struggle with large 

datasets and real-time demands. The proposed method may 

not generalize well to non-image tasks, such as natural 

language processing or time-series analysis, where PCA’s 

benefits might not be as evident. However, adapting PCA’s 

feature selection to task-specific requirements could extend 

its applicability. The framework's flexibility allows 

incorporating other dimensionality reduction techniques like 

t-SNE, Autoencoders, or ICA, depending on data and task 

characteristics. Hardware-specific optimizations, like 

quantization  and parallel processing, significantly improve 

performance and efficiency in FPGA-based systems. While 

these optimizations may not directly translate to other 

embedded systems, similar strategies in software (e.g., 

multi-threading or GPU processing) can yield significant 

performance improvements in non-FPGA environments.  In 

this work ,by leveraging PCA for dimensionality reduction, 

the proposed optimization framework reduces 

computational complexity while preserving critical features 

for accurate neural network processing. This approach, when 

combined with hardware-aware techniques such as 

quantization and parallel processing, achieves significant 

improvements in energy efficiency, latency, and hardware 

resource utilization. But the method is mathematically 

complex and needs experience in data science and machine 

learning 

The comparative analysis between Cascaded Feedforward 

Neural Networks (CFFNN), Deep Neural Networks (DNN), 

and Liquid Neural Networks (LNN) highlights the superior 

performance of PCA-enhanced LNNs for embedded 

applications. Though LNNs demonstrate adaptability and 

TABLE 9 
Comparison with Published Journal Works 

 

Metric Wu. et.al 2024 [34] Gao.et.al 2023 [35] Bachana 2023 [13] Proposed PCA-

enhanced LNN 

F1 Score (Average) 91.50% 93.40% 94.60% 98.20% 

Accuracy (Average) 91.80% 94.20% 95.10% 98.30% 

Latency (ms) 10.2 ms 15.6 ms 6.9 ms 2.9 ms 

FPGA Resource 

Utilization 

65% LUTs, 50% 

BRAM 

80% LUTs, 75% BRAM 60% LUTs, 55% 

BRAM 

55% LUTs, 50% 

BRAM (120K 

dataset) 

Energy Efficiency 

(GFLOPS/W) 

1.8 2.5 3.2 5.4 

Scalability Limited (fails with 

>100K samples) 

Moderate (scales poorly 

with complexity) 

Good (suitable for 

moderate datasets) 

Excellent (scales 

well with both size 

and complexity) 

Dimensionality Handling No dimensionality 

reduction 

No dimensionality 

reduction 

Moderate (can 

handle complex 

data to an extent) 

Excellent (via PCA, 

handles large 

features effectively) 

Application Domain Small-scale embedded 

systems 

Medium-scale embedded 

systems 

Real-time edge 

intelligence 

(moderate 

complexity) 

Real-time edge 

intelligence with 

large datasets 
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efficiency in resource-constrained environments, making 

them particularly well-suited for real-time edge intelligence 

applications but due to newness of this algorithm it is very 

tough to characterize it for application domain. The 

comparison in TABLE 9 proves that the proposed methos 

supremacy over various metrics for different paper like Wu 

et al. 2024, Gao et al. 2023, Bachana 2023,. The Proposed 

PCA-enhanced LNN outpaces others in F1 Score, accuracy, 

latency , resource allocation etc. The proposed method 

shows the accuracy in average 98.2 %  which is quite high 

while with respect to FPGA resource allocation it gives quite 

better results with better energy efficiency. This TABLE 9 

comparison enlightens about ML based FPGA applications. 

The proposed system design and implementation platform 

hold immense potential for future advancements in 

embedded computing applications. To scale for larger 

datasets and complex real-world applications, optimization 

of memory management and support for double-precision 

floating-point arithmetic can be explored. Transitioning to 

modern FPGA platforms with higher logic density, faster 

clock speeds, and AI-centric tools like Vitis AI can further 

enhance performance. Parallel processing using multiple 

processors and pipelining techniques can improve 

throughput, while integration with energy-efficient 

hardware and cloud computing resources can enable 

deployment in mobile and IoT devices. The platform can be 

extended to accelerate machine learning algorithms, 

including deep learning models, while introducing 

cryptographic modules and security features to safeguard 

data. Additionally, its application scope can be expanded to 

domains like autonomous vehicles, robotics, and space 

exploration, complemented by comprehensive 

benchmarking to validate its capabilities. These 

advancements would establish the platform as a scalable, 

efficient, and secure solution for next-generation embedded 

systems. 

 
IX. CONCLUSION 

This study has demonstrated the effectiveness of integrating 

Principal Component Analysis (PCA) into the deployment 

of neural networks on FPGA-based embedded systems. By 

leveraging PCA for dimensionality reduction, the proposed 

optimization framework significantly reduces computational 

complexity while preserving critical features for accurate 

neural network processing. When combined with hardware-

aware techniques such as quantization and parallel 

processing, the approach achieves notable improvements in 

energy efficiency, latency, and hardware resource 

utilization. The comparative analysis of Cascaded 

Feedforward Neural Networks (CFFNN), Deep Neural 

Networks (DNN), and Liquid Neural Networks (LNN) 

underscores the superior performance of PCA-enhanced 

LNNs in resource-constrained environments. PCA-

enhanced LNNs exhibit adaptability and efficiency, making 

them particularly well-suited for real-time edge intelligence 

applications. Experimental results confirm that the PCA-

enhanced LNN outperforms traditional neural network 

architectures in computational efficiency and scalability. 

Specifically, case studies reveal an average F1 score of 

98.0%, accuracy of 98.3%at high clock rates. 

To validate these findings statistically: Confidence 

intervals (CI) for the F1 score and accuracy were calculated. 

For the F1 score, the 95% CI was [97.8%, 98.2%], and for 

accuracy, the 95% CI was [98.1%, 98.5%], indicating high 

consistency in the results. The standard deviation of the F1 

score and accuracy across trials was 0.150.150.15 and 

0.120.120.12, respectively, demonstrating minimal 

variability in the system's performance. A paired t-test 

comparing PCA-enhanced LNNs with other architectures 

showed statistically significant improvements (p<0.01p < 

0.01p<0.01), confirming the superiority of the proposed 

methodology. The statistical analysis reinforces the 

robustness and reliability of the PCA-enhanced LNN for 

embedded applications. These results validate that PCA-

enhanced LNNs achieve consistent and high performance 

under varying conditions, making them a versatile and 

robust solution for next-generation embedded computing 

applications. Future work could further refine this 

framework, exploring additional hardware-aware 

optimizations and broader application domains. 
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