
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 431

RESEARCH ARTICLE OPEN ACCESS

Manuscript received November 15, 2024; Revised January 10, 2025; Accepted March 1, 2025; date of publication March 27, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i2.681
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
How to cite: Bhupesh Deka, Sayanti Chatterjee , S Rao Chintalapudi, Jajala Nikitha, Lakshminarayana Kodavali, Kancharagunta Kishan
Babu, “Optimized PCA Infused Liquid Neural Network Deployment for FPGA-Based Embedded Systems”, Journal of Electronics, Electromedical
Engineering, and Medical Informatics, vol. 7, no. 2, pp. 431-449, April 2025.

Optimized PCA Infused Liquid Neural Network
Deployment for FPGA-Based Embedded
Systems

Bhupesh Deka1 , Sayanti Chatterjee1 , S Rao Chintalapudi2 , Jajala Nikitha3 , Lakshminarayana
Kodavali4 , Kancharagunta Kishan Babu1

1 Department of Computer Science and Engineering (AIML & IoT), Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering
 &Technology, Hyderabad, India, 500090
2 Department of Computer Science and Engineering (AI&ML), CMR Technical Campus, Hyderabad, India,
3 Department of Emerging Technologies (DS,CyS,IoT), Mallareddy College of Engineering and Technology (MRCET), Hyderabad, India,
4 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, AP, India

Corresponding author: Sayanti Chatterjee (sayanti_ch@vnrvjiet.ac.in)

The authors express their heartfelt gratitude to the institutions: VNR Vignana Jyothi Institute of Engineering & Technology for their unwavering
support and resources

ABSTRACT The integration of neural networks into FPGA-based systems has revolutionized embedded computing by

offering high performance, energy efficiency, and reconfigurability This paper introduces a novel optimization framework

integrating Principal Component Analysis (PCA) to reduce the complexity of input data while preserving essential features for

accurate neural network processing. By applying PCA for dimensionality reduction, the computational burden on the FPGA is

minimized, enabling more efficient utilization of hardware resources. Combined with hardware-aware optimizations, such as

quantization and parallel processing, the proposed approach achieves superior performance in terms of energy efficiency,

latency, and resource utilization. Simulation results demonstrate that the PCA-enhanced Liquid Neural Network (LNN)

deployment significantly outperforms traditional methods, making it ideal for edge intelligence and other resource-constrained

environments. This work emphasizes the synergy of PCA and FPGA optimizations for scalable, high-performance embedded

systems. A comparison study using simulation results between cascaded feed forward neural network (CFFNN), deep neural

network (DNN) and liquid neural network (LNN) has been encountered here for the embedded system to show the efficacy of

PCA based LNN. It has been shown from case studies that the average F1score is 98% in case of proposed methodology and

accuracy is also 98.3% for high clock value.

INDEX TERMS CFFNN, DNN, FPGA, Liquid neural network, Principal component analysis, Reconfigurable hardware,

I. INTRODUCTION

With the rapid advancement of embedded and mobile

systems, a nascent domain of inquiry within data mining has

emerged, focusing on streamlined software code and compact

hardware architecture[1], [2]. In the contemporary landscape,

data mining has assumed a pivotal role across various sectors,

encompassing scientific research, medical diagnostics,

marketing, biotechnology, multimedia, security, finance,

among others. In the present era, the tasks associated with data

management and data mining are increasingly characterized

by computational complexity and significant data

intensity[1],[3], [4]. These tasks necessitate considerable data

processing capabilities. Moreover, in various contexts, the

real-time data must be managed effectively to derive the

genuine benefits. These limitations significantly impact the

performance accuracy and speed of embedded system

applications. To alleviate the demands and constraints present

in portable, embedded devices, and to enhance the efficiency

of applications on these platforms, it is imperative to integrate

certain hardware within software and hardware system

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v7i2.681
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0001-9460-5796
https://orcid.org/0000-0002-3675-2672
https://orcid.org/0000-0002-5023-6711
https://orcid.org/0009-0009-6178-1967
https://orcid.org/0000-0003-2403-8532
https://orcid.org/0000-0001-5613-804X

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 432

architectures. The engineered hardware is specifically tailored

to provide superior performance speed, area efficiency, and

reduced power consumption [5] in comparison to the

analogous software executed on microprocessors.

In recent years, machine learning has emerged as a

preeminent domain in a multitude of research applications,

including human activity recognition. However, the escalating

demands for accuracy and the complexities associated with

practical implementations render the realization of such

systems challenging due to device speed constraints and

energy costs[6]. To address these limitations, enhancements

in efficiency alongside reductions in power consumption have

prompted increased interest in the reconfigurable utilization

of hardware[7].

The proposed architecture's design, implementation, and

validation have been meticulously formulated to address

existing deficiencies while enhancing both the speed and

overall performance of the proposed system, all while

maintaining exceptionally low power consumption levels.

The objectives of this proposed work are to develop and assess

a comprehensive reconfigurable framework that facilitates

run-time adaptability through the application of machine

learning (ML) methodologies.

The principal cognizance of this architectural framework is

predicated upon a machine learning algorithmic platform that

augments classifiers operating on a general-purpose

processor, by explicitly mapping the computationally

intensive components that are executed by reconfigurable

hardware. This methodology not only amplifies the

performance of the architecture but also facilitates an increase

in the embedded applications that will constitute the units

functioning as co-processors within general-purpose systems.

Machine learning constitutes a special domain that entails

instructing machines on how to acquire knowledge,

possessing the capacity to swiftly process extensive volumes

of data through mathematical computations; consequently,

machine learning has come out as a formidable instrument in

contemporary times. Nevertheless, a novel generation of

computational methodologies referred to as reconfigurable

computing is now positioned to elevate machine learning to

unprecedented levels.

Computing integrates the speed of ICs with the flexibility

of processors. Reconfigurable instruction set processors

are one of the widely used reconfigurable

computing products and have been developed

using several design approaches. Their performance relies on

the configuration units, which update the processor settings

dynamically. To improve the performance of reconfigurable

processors, a configuration design has been created that

maximizes the reusability of existing configuration streams.

This architecture allows for the loading of the most ideal

configurations, which results in increased efficiency and

performance. In some fundamental applications, a fixed

processor design is a good choice. However, unknown

applications have such a diverse set of algorithms that a fixed

standard will fail to meet the desired process speed. It is quite

tough to design specialized hardware. Machine Learning

Applications with Diverse Algorithms demand specialized

hardware and are more expensive than reconfigurable

solutions.

Computing paradigm research relies heavily on

reconfigurable computing technologies. Reconfigurable

computing provides performance and flexibility in gaining on

a single computer system. The performance of the

reconfigurable systems depends much on the management of

configuration. Configuration Management improves the

processing power in reconfigurable computing systems.

Advanced control and management [8]strategies drive the

progress of technology [9]. Configuration techniques facilitate

innovation in multiple switching, partial reconfiguration,

configuration cloning, and configuration pipelining-these are

key efficient parameters of reconfigurable computing system

As article states, reconfigurable computing is comprised

of three key components: architectures, design

methodologies, and applications. Modern architectural

trends are focused on coarse-grained fabrics, heterogeneous

functionalities, and soft cores. Coarse-grained fabrics use

larger reconfigurable logic blocks that can process

information more efficiently. Heterogeneous functionalities

allow for greater customization and optimization of specific

tasks. Soft cores leverage pre-existing processor architectures

that can be adapted to meet the unique needs of applications

like media processing, numerical computing, and embedded

systems.

Paper [9], [10]]examines the effect of FPGA embedded

array topologies on their logic execution capability. This

research is based upon several architectures having different

sizes of memory arrays and evidences the heavy impact of

heterogeneous architectures on logic implementations in

contrast to single-size memory arrays.

Zippy is a hybrid CPU that features a multi-context

reconfigurable array and stands out for its built-in hardware

virtualization capabilities. It utilizes a technique called

virtualized execution for hardware virtualization. Study [11],

[12]highlights a strategy known as temporal partitioning,

while works [5-7] discuss advancements in digital electronics

technologies, which have significantly enhanced computing

power. In the field of AI, there is a strong focus on deep

learning (DL) as a transformative area of research and

application.

The fundamental purpose of this work is to provide an

efficient solution for embedded systems to improve

computing performance and data-intensive applications, such

as data gathering on mobile or embedded devices. This

unique optimized method for data extraction for embedded

hardware architectures uses probabilistic principal component

analysis (PPCA) [13], [14] . In this process, the true data is

transformed into a new dataset while the key attributes remain

unchanged. PCA [15] has previously been described in the

literature. PCA has produced superior results. This PCA -

based data mining has been integrated into image processing

of biometric data to improve efficiency and reduce memory

access on embedded platforms.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 433

The second portion of the work focuses on data recognition

and classification for biometric images. This is the most

efficient benchmark, which can be clarified using NN [8],

[16]. This research investigates the Cascaded feed forward

NN and deep NN as image processing models[16], [17], [18].

Accurate recognition of provided graphical objects should be

robust to scale, translation, and rotation of the input [22]. To

include these properties into a neural network, the algorithm

selection must be appropriate.

For the better understanding different metrices have been

compared for PCA and other optimization techniques as well

as proposed neural networks. The performance matrices

which are needed for comparison has been listed as Metric 1-

6. Metric 1 is about Performance accuracy and Metric 2 is

the Latency which can be defined as time taken to process the

data (in seconds or milliseconds). Metric 3 is basically

memory usage which is basically usage over available

memory. Metric 4 is about Power consumption in watts or

joules during data processing. Metric 5 is nothing but

(Overall Performance): Combined performance metric or

computation efficiency. The last but not the least is Metric 6

(Execution Time): Time taken for the model to learn from the

training data.

The Key Considerations for calculating the above metrics

are namely Dataset Characteristics, Application

Requirements and Trade-offs. Dataset Characteristics can be

defined as the choice of metrics depends on the specific

dataset and the problem being addressed. Application

Requirements means prioritize metrics that are most relevant

to the application's needs (e.g., latency for real-time systems,

energy efficiency for mobile devices). Trade-offs: defines

between different performance metrics (e.g., accuracy vs.

speed, accuracy vs. resource usage). By carefully selecting

and tracking these metrics, you can effectively evaluate and

compare the performance of PCA and various neural network

architectures. The main research gap for embedded system is

Robustness and Reliability [5], [19], [20]and the other one is

the hardware-software co-design [21]. Efficient deployment

requires co-optimization of hardware and software for

embedded neural networks, though it is found in some

literatures [22], [23], [24]

The present authors have planned to resolve the problem.

The feature extraction has been done with PCA which is

already used but not for input of liquid neural network. In the

work of [13], [25] PCA is used but the application domains

are different to check the efficacy. On the other hand

embedded system is basically domain-specific optimizations

for embedded neural networks (e.g., biomedical devices,

smart agriculture)[26], [27] Transfer learning methods for

adapting pre-trained models to resource-constrained domains

is a challenging task.

Liquid neural networks (LNNs) are a promising approach

to evaluate many of the challenges and research gaps

identified in neural networks for embedded systems. Liquid

neural networks are characterized by their adaptability and

efficiency, making them well-suited for dynamic, resource-

constrained environments like embedded systems [28], [29],

[30]. Liquid neural networks are designed to be sparse and

adaptive, which inherently reduces the computational load

compared to traditional neural networks like cascaded feed

forward neural network (CFFNN), deep neural network

(DNN) such as [31]. The focal aim of the work to reduce the

shortcomings of the above-mentioned methods and fill the

research gap found. Under these circumstances, in this work

the features has been extracted by PCA and then used it in the

liquid neural network for better classification and optimize the

algorithm for Deployment for FPGA-Based Embedded

Systems. The following part of this study discusses the

features and advantages of FPGA-based reconfiguration. The

third part explored PCA based data mining, which were

followed by the LNN, CFFNN and DNN algorithms in the

fourth part. The fifth section is about the findings and ends

with a conclusion.

II.FPGA-BASED METHODS FOR RE-CONFIGURATION:
A BRIEF ID

Field-Programmable Gate Arrays (FPGAs) are versatile

devices that can be reconfigured to implement various

hardware functions. This flexibility makes them ideal for

applications that require adaptability and dynamic behavior.

FPGA-based reconfiguration techniques al-low for modifying

the FPGA's functionality on-the-fly, enabling a wide range of

applications.

 The first classification pf FPGA is Partial Reconfiguration

(PR). This method involves modifying a portion of the

FPGA's configuration while the rest of the device remains

operational. It also enables dynamic updates to specific

hardware blocks without disrupting the entire system.

Dynamic Partial Reconfiguration (DPR) which is another

variety is basically a subset of PR that allows for

reconfiguration while the FPGA is actively processing data

which Offers greater flexibility and responsiveness compared

to traditional PR. The third type is Behavioral

Reconfiguration. This reconfiguration involves modifying the

behavior of the FPGA by changing the control logic or data

flow which can be achieved through: Reconfigurable logic

blocks. Dynamically reconfigurable interconnects.

Programmable look-up tables (PLUTs) which enables more

radical changes to the FPGA's functionality compared to other

Partial Reconfiguration. The for real-time face detection in a

surveillance application has been taken into account for the

FPGA program.

III. SYSTEM DESIGN METHODOLOGY AND
IMPLEMENTATION PLATFORM

A hierarchical, platform-based design methodology is

employed to facilitate component reuse and scalability. The

system is structured into multiple levels of abstraction. This

section deals with the implementation using the proposed

methods.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 434

 A. DESIGN METHODOLOGY

The first one is Low-Level Operators which performs

basically fundamental operations such as addition,

subtraction, multiplication, division, square root, and

comparison are defined as the base of the design hierarchy.

Higher-Level Modules are mainly Computational modules,

including Mean, Covariance Matrix, Eigenvalue Matrix, and

Principal Component (PC) Matrix, are constructed by

utilizing these low-level operators. Both hardware and

software implementations of these operations are developed

to ensure flexibility and performance optimization.

B. IMPLEMENTATION PLATFORM

 The current work can be classified into two work platforms,

namely: Hardware Platform and Software platform. All

experiments in hardware platform are conducted on the

ML605 FPGA development board, which is equipped with

the modules such as FPGA Device, on-chip resources, non

volatile storage and clock as given in TABLE 1.

TABLE 1

 Hardware Implementation platform details

Module Name Specification

FPGA Device
A Xilinx Virtex 6 XC6VLX240T-

FF1156.

On-Chip Resources

37,680 slices for logic

implementation.

2 MB BRAM (Block Random

Access Memory).

512 MB external DDR3-SDRAM

for handling large datasets.

Non-Volatile Storage

128 MB Platform Flash XL.

32 MB BPI Linear Flash.

2 GB Compact Flash for

configuration bitstreams

Clock
Clock Speed: FPGA modules

operate at 100 MHz.

Hardware modules are designed using VHDL and

Verilog. Verification of designs is performed using tools

such as ModelSim SE, Xilinx ISim, and ChipscopePro 14.7.

Design synthesis and implementation are carried out using

Xilinx ISE 14.7 and XPS 14.7. Software Platform consists

of Software modules which are executed on the MicroBlaze

soft processor, synthesized onto the FPGA. The soft

processor is configured to run at 100 MHz and synthesized

using the FPGA’s general-purpose logic. Unlike hard

processors such as PowerPC, the MicroBlaze processor is

synthesized to fit within the FPGA’s gate arrays.

A. PERFORMANCE METRIC

In an embedded system, "Speedup" has been discussed in Eq.

1. is a metric used to evaluate the performance improvement

offered by hardware over software. It is calculated by dividing

the improved execution time achieved through hardware by

the baseline execution time taken by the software as in Eq.

1[13]. A higher speedup value indicates that the hardware

implementation is more efficient compared to the software

version. For instance, if a task takes 10ms in hardware and

50ms in software, the speedup would be 5, meaning the

hardware is five times faster. This metric helps in making

informed decisions about whether to use hardware or software

for specific tasks.

Speedup =
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)

Baseline xecution ime (Software)
(1)

B. BENCHMARK DATASET

The dataset contains 3823 records (vectors), each with 64

attributes. Data includes 200 handwritten characters

collected from 43 individuals. The details of ML605 FPGA

development board, has been shown in FIGURE 1. The

schematic diagram has been used in [13], [15] has been

reused in this work to advocate the efficacy the proposed

method. The synthesis has been carried away by hardware

as well as the software platform. The output dataset of the

system has been used for further work. PCA has been used

FIGURE. 1. FPGA-Based Methods for Reconfiguration

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 435

here for feature extraction for the fingerprint data carried out

using Xilinx ISE 14.7 and XPS 14.7. Software modules used

are written in Python and executed on the MicroBlaze soft

processor, synthesized onto the FPGA.

IV. PCA BASED DATA MINING FOR EMBEDDED
SYSTEM

This section has been dealt with two different headers. The

first section addresses the common features of PCA and the

second part advocates about the application of PCA in the

light of embedded system and the specific paradigm of PCA

for the current application

A. GENERALIZED PCA BASED DATA MINING
 PCA is a preprocessing tool. This PCA version focuses

on the best combination of variables to reduce data

redundancy. It is applied to shrink large

datasets obtained from tests, thereby minimizing information

loss. An important feature of PCA

is that it reduces dimensionality by grouping smaller datasets

without altering the core information.

 The motivation behind PCA is that smaller datasets are

easier to explore, visualize, and analyze. This makes them

suitable for neural networks and other machine learning

algorithms by eliminating unnecessary variables, thus

improving processing speed and reducing memory usage.

PCA steps are given in Eq. (2-4) [15], [21] . First step deals

with the standardization of the Data. PCA is sensitive to the

scale of data, so the first step is to standardize the dataset by

scaling the features to have zero mean and unit variance. This

ensures that each feature contributes equally to the analysis.

Xscaled = X − μσ (2)

where: X is original data; μ is mean of the data; σ is standard

deviation of the data. In the second step Covariance Matrix

has been calculated to understand the relationships between

different features in the dataset. The covariance matrix

captures the variance and correlation between features. After

that: Performance of eigened composition on the covariance

matrix has been done to extract its eigenvalues and

eigenvectors. eigenvalues represent the magnitude of

variance along the principal components. Eigenvectors

represent the direction of the principal components.

The step deals with the selection of Principal component.

The eigenvalues have been sorted in descending order and

selected the top k eigenvalues and their corresponding

eigenvectors. The selected components will explain the

majority of the variance in the dataset. Explained Variance

Ratio is calculated to decide how many components to

retain:

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 = ∑ 𝑗 = 𝑑𝜆𝑗 (3)

where λi is the eigenvalue of the i-th component. The

components are chosen so that such that the cumulative

explained variance meets a desired threshold (e.g., 95%).

In the last step data projected has been carried out Transform

the original data onto the new k-dimensional feature space

using the selected eigenvectors (principal components).

XPCA = X ⋅ 𝑊X (4)

where X is Standardized data; W is Matrix of selected

eigenvectors (principal components) and the PCA is the

principal component analysis.

B. PCA FOR Embedded System

As discussed, prior, Principal Component Analysis (PCA) is

a commonly used technique for dimensionality reduction in

multivariate statistical analysis. In the context of embedded

systems, PCA can be particularly useful for handling large

datasets from sensors or other input devices by reducing the

amount of data that needs to be processed, stored, or

transmitted.

In this section, the mathematical model of PCA has been

delved deeper. For high-dimensional data, Sparse PCA has

been introduced here to reduce computational complexity

while retaining essential features. Sparse PCA is considered

for embedded device (e.g., a microcontroller or FPGA) that

collects sensor data with hundreds of features. By applying

Sparse PCA, the dimensionality of the data can be reduced,

and the key features of interest can be preserved while using

less computational power. The sparsity of the principal

components will allow the system to handle operations like

classification or anomaly detection more efficiently, since

the sparse data representation leads to faster matrix

operations and lower memory requirements.

The mathematical modelling for Sparse Principal

Component Analysis (Sparse PCA) involves an optimization

problem that balances between maximizing explained

variance and encouraging sparsity. Here’s a detailed step-

by-step process of how it can be implemented, particularly

in the context of embedded systems. The goal is to find

sparse principal components while retaining as much

variance as possible. The sparse PCA problem can be

formulated as in Eq.5 [15].

𝑚𝑎 𝑥 𝑊 ∈ 𝑅𝑝 × 𝑘 s.t. |𝑊|0 ≤ 𝑠 (5)

where X is the data matrix, W is the projection matrix

(principal components), ∥ F ∥ denotes the Frobenius norm. ∥
𝑂 ∥ denotes the sparsity constraint (the number of non-zero

elements), S is the sparsity level. In the context of embedded

systems, Sparse PCA helps reduce the dimensionality of the

data while maintaining meaningful features, making the data

processing more efficient and suitable for hardware

implementation constraints. The process involves balancing

between retaining the maximum variance and ensuring that

the principal components have sparse representations. This

balance is crucial for optimizing performance and resource

usage in embedded systems. Consequently, Sparse PCA can

enhance real-time processing capabilities and prolong the

lifespan of embedded devices. Moreover, the technique

supports scalability, allowing the system to handle increasing

amounts of data without significant performance degradation.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 436

This makes Sparse PCA a powerful tool for modern

embedded AI applications. Steps involved in Sparse PCA :

V. LIQUID NEURAL NETWORK: A BRIEF IDEA

A Liquid Neural Network (LNN) is a type of recurrent

neural network that processes data sequentially and

continuously, adapting its structure based on new inputs.

Unlike traditional neural networks, LNNs can handle

variable-length inputs and maintain memory of past inputs,

making them particularly effective for time-series data.

Liquid Neural Networks (LNNs) are based on continuous-

time recurrent neural networks (CTRNNs) and are defined

by differential equations. Here are some key mathematical

equations and algorithms used in LNNs as in Eq. (6,7) [31].

The first one is Ordinary Differential Equations (ODEs).

Ordinary Differential Equations (ODEs) are a type of

equation used to describe the behavior of dynamic systems.

In the context of a network, the state of the system is

represented by the state vector xx, which changes over time.

The state of the network is described by a set of ODEs:
𝑑𝑥

𝑑𝑡
= f(𝑥, 𝑢, 𝑡) (6)

Eq. (6,7)[31] defines the rate of change of the state vector

x(.) with respect to time t. In this equation, u(.) represents the

input vector that influences the system, and f(.)is a nonlinear

function that relates the state and input vectors to the rate of

change of the state. This nonlinear function encapsulates the

dynamics of the network and governs how the state evolves

over time in response to inputs. The second method in this

aspect is Runge-Kutta Methods. For solving ODEs, methods

like the Runge-Kutta (RK) method are often used:

 xn+1  =  xn  +  Δ t  ⋅  k (7)

where k is the RK coefficient calculated based on

intermediate steps t . Liquid Neural Networks (LNNs), such

as Liquid Time-Constant Networks (LTCs), are

mathematically grounded in the use of differential equations

to model the dynamics of neurons and their changing

behavior over time. Here’s a breakdown of the core

equations that describe LNNs. Core Neuron Dynamics

evolves over time according to a system of ordinary

differential equations (ODEs) as in Eq. (8)[31].

dh(t)dt = f(h(t), x(t), W, θ) (8)

where h(t) is the hidden state of the neuron at time t.,x(t).

The input signal at time t,W: Weight matrices (input-to-

hidden and hidden-to-hidden connections). θ: Parameters

defining the dynamics (e.g., time constants, biases),f: A non-

linear function that governs the evolution of the system.

Liquid Time-Constant Networks, the key idea is that the

time constants of the neurons vary dynamically. The ODE

for each neuron can be stated as Eq. (9,10) [31].

dhi(t)/dt = −hi(t) + g(W ⋅ ℎ(t) + U ⋅ 𝑥(t) + b) (9)

where hi(t) is the state of the i-th neuron at time t, τi(⋅). The

time constant for the i-th neuron, which is a function of the

neuron state and input. g(⋅): The activation function (e.g.,

sigmoid, tanh, ReLU). W: The recurrent weight matrix. U:

The input weight matrix. b: The bias term. The liquid

property comes from the time constants τi, which can vary

non-linearly based on the neuron’s state and input.

Neuron time constant dynamics τi are modeled by the

state h(t) and input x(t). Parameters α and β control the time

constant's range, while the sigmoid function σ ensures τi

remains positive. Weights v and w adjust contributions from

the state and input.

𝜏𝑖(ℎ(𝑡), 𝑥(𝑡)) = 𝛼 + 𝛽 ⋅ 𝜎(𝑣⊤ℎ(𝑡) + 𝑤⊤𝑥(𝑡) (10)

where α,β are parameters controlling the range of the time

constant, σ(⋅) is a sigmoid function to ensure τi stays

positive, v,w are learnable weights for the state and input

contributions. The overall output y(t) of the network is

computed using the hidden states.

𝑦(𝑡) = ℎ𝑜𝑢𝑡𝑝𝑢𝑡 (11)

where houtput(⋅) is the readout function, which could be a

simple linear transformation or another non-linear mapping

as in Eq. (11) [31]. For the sake of discretization for

Computation, in practice, these continuous ODEs are solved

numerically using time-stepping methods (e.g., Euler or

Runge-Kutta). For a small time step Δt, the hidden state

update becomes:

ℎ(𝑡 + 𝛥𝑡) = ℎ(𝑡) + 𝛥𝑡 ⋅ 𝑑ℎ(𝑡) (12)

where 𝑑ℎ(𝑡/)𝑑𝑡 is calculated using the above ODE

equations as in Eq. (12)[28], [31]. The last step is Training

Liquid Neural Networks. Training LNNs involves

backpropagation through time (BPTT) or adjoint sensitivity

Input: Data matrix 𝑋 ∈ 𝑅𝑛×𝑝 , Sparsity parameter

s>0s > 0s>0

Step 1: D Compute the mean μ of each feature in the

dataset X and center the data

Xcentered=X−μ

Step 2: Compute Covariance Matrix C for ‘ n’ no. of

data

C = 
1

n-1
 Xcentered

T  Xcentered

Step 3: Use convex relaxation techniques like Lasso to

encourage sparsity in the solution W, where sss

controls the sparsity level.

 trace(𝑊𝑇𝐶𝑊) s.t. |𝑊|1 ≤ 𝑠

Step 4: Iterative Algorithms Repeatedly compute the

principal components with a threshold to enforce

sparsity

Step 5:Repeat until convergence. The final W contains

sparse principal components that highlight key

features.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 437

methods (for efficient computation with ODEs. These LLN

equations capture the fundamental behavior of Liquid

Neural Networks and their adaptability, making them

powerful for tasks requiring dynamic, real-time responses to

evolving inputs. The details flowchart has been discussed in

FIGURE 2.

FIGURE 2. Flowchart for Liquid neural network

VI. PROPOSED ALGORITHM OVERVIEW

To optimize FPGA-based embedded systems, start with data

collection from sensors. Preprocess data using

normalization, as in Eq.13 [28], [30]. Apply PCA by

computing covariance matrix performing eigen

decomposition and selecting top components Design a

Liquid Neural Network (LNN) with an input layer and

readout layer (Eq. 18). Optimize hardware by applying

quantization, parallel processing, efficient memory storage,

and reducing power consumption. Finally, deploy and

evaluate the model. Combining PCA and LNN ensures fast,

power-efficient AI processing suitable for embedded

applications. The algorithm can be classified into five steps

which have been elaborated in this section. At first, data X

has been collected from embedded system sensors Data

Preprocessing has been performed as in Eq. (13) [31] to

normalize it. For feature extraction, Principal Component

Analysis (PCA) are discussed in Eq. (14-16) [31], [32]. First

the covariance matrix has been computed as in Eq. 13

[29]where it scales each feature of the dataset X to a range

between 0 and 1 using min-max normalization. Covariance

matrix has been calculated and eigen value decomposition

also performed as in Eq. 14 [30] where covariance matrix C

has derived from the normalized data X′ where n is the

number of data points (rows). Eq. 15 [33], eigen

decomposition of the covariance matrix C. V contains eigen

vectors (principal directions or axes). Λ is a diagonal matrix

with eigen values .The top principal components PC have

been selected using Eq.16 [28], [30]. by multiplying the

normalized data X′ by the top k eigenvectors Vk (columns of

V)

 𝑋′ =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
 (13)

 C =
1

𝑛−1
𝑋′𝑇𝑋′ (14)

 C = VΛ𝑉𝑇 (15)

PC = 𝑋′𝑉𝑘 (16)

After successful feature extraction Liquid Neural Network

(LNN) have been employed successfully. The steps for

liquid neural network have been discussed as in Eq. (17-19)

[30]. As discussed in prior section the steps of LNN are as

follows (ALGORITHM 1):

ALGORITHM 1: Steps of LNN

Input Layer: Embed reduced data:

 u(𝑡) = PC (17)

The input signal u(t) is the result of projecting your original

data onto principal components (PC). This is a dimension-

reduced representation of the data.

Reservoir: Process data:

 𝑥(𝑡 + 𝛥𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (18)

where, x(t) is the reservoir’s internal state at time t.

A is the reservoir weight matrix, dictating how the current

state evolves. B maps the input signal u(t) into the reservoir.

The reservoir captures temporal and nonlinear dynamics of

the input data.

Readout Layer: Map reservoir states

 𝑦(𝑡) = 𝐶𝑥(𝑡) (19)

The reservoir’s internal state x(t) is mapped to the output y(t)

using matrix C

Optimization: Use y(t) to optimize embedded system

parameters.

Evaluation: Assess performance and iterate if necessary.

The parallel processing has been employed to accelerate

computations. The main aim of using PCA induced LNN to

FPGA is to reduce power consumption through weight

pruning and sparsity strategies. By combining PCA and

LNN, this approach enables fast, power-efficient neural

network processing, making it ideal for embedded AI

applications.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 438

A. THE SELECTION OF PARAMETERS FOR A PCA-

BASED LIQUID NEURAL NETWORK (LNN)

In FPGA-based embedded systems is crucial to achieving a

balance between performance, resource efficiency, and

accuracy. Key parameters which have been used in this

current work has been jotted down in this work. The first one

is PCA Parameters. A typical choice is to retain 90-95% of

the data variance, ensuring that important features are

preserved while reducing computational load. The second

important parameter is Sparsity Regularization Parameter

(λ). In Sparse PCA, the regularization parameter λ controls

the sparsity of the principal components. A higher λ

increases sparsity, reducing resource usage by eliminating

less important features. The another Neural Network

Parameters is Learning Rate (α) which governs the

magnitude of weight updates during training. A rate between

0.001 and 0.01 is commonly selected. The other parameter,

batch size determines the number of samples processed

together in one pass during training. Typically, values of 16

or 32 are selected for embedded systems to balance memory

usage and parallelism on the FPGA. Larger batch sizes

improve parallel computation, while smaller sizes reduce

memory load.

For FPGA systems, LNNs typically have fewer layers and

neurons to optimize resource usage. A shallow architecture

with 20-100 neurons per layer is commonly chosen. While

more layers improve model capacity, they increase resource

demands, so fewer layers are selected for better efficiency.

Quantizing weights and activations to 8-bit or 16-bit

precision reduces memory and computational overhead on

FPGA hardware. While lower bit-widths reduce resource

usage, excessive quantization may reduce accuracy.

For the sake of Activation Parallelism, the ReLU activation

function is commonly used due to its computational

simplicity, essential for efficient FPGA implementation.

The parameters of the PCA-based LNN are selected to

reduce FPGA resource usage while maintaining high

accuracy, achieving 98.3% accuracy and 98% F1 score in

simulation results. These choices optimize the network for

embedded, real-time systems.

FIGURE 3 showed here gives the UML diagram of the

proposed method as this diagram clearly visualizes system

architecture and design, aiding efficient communication and

understanding among stakeholders. This diagram effectively

outlines the relationships between different system modules,

their interactions, and data flow, making it easier for

developers, analysts, and other stakeholders to understand

the system’s functionality. A key feature of LNNs is the

Time-Dependent Feedback Loops, allowing continuous

learning and adaptation. The Online Learning mechanism

refines the network using Liquid Dynamics, which ensures

flexible, real-time responses. Feedback from the output

refines the learning process iteratively. Finally, the network

produces results through the Output Layer, completing the

adaptive neural processing cycle.

FIGURE 3. UML Diagram of proposed method

It starts with the Dataset, which provides data to the PCA

Processor for feature reduction. The processed features are

passed to the Liquid Neural Network, which consists of

Neurons for computation. The trained model is deployed to

an FPGA Controller, which executes predictions and

provides feedback. The results are evaluated by the Results

Evaluator, which assesses accuracy and generates reports.

This system highlights a structured approach to real-time,

adaptive learning using FPGA hardware acceleration for

neural network execution and performance improvement.

VII. RESULTS
The different stages of PCA calculation for feature

extraction and dimensionality reduction include the first

stage (mean calculation), the second stage (Covariance

Matrix), the third stage (Eigenvalue Matrix), and the fourth

stage (Principal Component Matrix). The mathematical

details have been discussed in TABLE 2.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 439

TABLE 2

Summary of PCA Stages

PCA involves multiple steps to reduce dimensionality.

Firstly, mean calculation centers the data by subtracting the

mean from each feature. Secondly, the covariance matrix is

computed to understand relationships between features.

Thirdly, eigen decomposition identifies principal directions

(eigenvectors). Finally, the projection stage. transforms the

data into a lower-dimensional space. This process simplifies

complex datasets, making them easier to analyze and

visualize while preserving essential information.

These stages have been experimentally tested as separate

entities, with different vector counts and data sizes. A Monte

Carlo simulation with 100 executions for each stage. The

average execution time is given. In TABLE 3, a Monte

Carlo simulation with 100 executions for each stage. The

average execution time is given. It presents a comparison

of execution times across all four stages with and without

PCA. It also shows the Computation time for PCA and

without PCA of four stages.

This table highlights the average execution times for each

stage, demonstrating the impact of PCA on computation

time. By incorporating PCA, we observe the efficiency in

processing, as important features are retained while reducing

the computational load. The comparison showcases the

benefits of using PCA in optimizing performance in

embedded systems.

In TABLE 3, a Monte Carlo simulation with 100

executions for each stage. The average execution time

is given. It presents a comparison of execution times across

all four stages with and without PCA. It also shows the

Computation time for PCA and without PCA of four stages.

TABLE 4 provides insights into the trade-offs and

benefits of dimensionality reduction versus raw data

processing. Each of these techniques has its unique

applications and strengths in handling and transforming data

for better analysis and interpretation.

Principal Component Analysis) is a statistical technique

used to reduce data dimensionality by transforming variables

into a smaller set of uncorrelated principal components,

capturing most of the original data’s variance. PPCA

(Probabilistic Principal Component Analysis) extends PCA

by introducing a probabilistic model, allowing for robust

handling of missing data and noise, making it useful in

various real-world scenarios. ICA (Independent Component

Analysis) focuses on separating a multivariate signal into

independent components, often employed in signal

processing to isolate mixed signals, such as separating audio

sources in a recording. SVD (Singular Value

Decomposition) is a matrix factorization method that

decomposes a matrix into three other matrices, providing

valuable applications in noise reduction, image

Stage Description Mathematical Operation

1.Mean

Calculation

Centering data by

subtracting mean

from each feature.

𝑋′ = 𝑋 − 𝜇𝑋′

μX represents the mean of

each column (feature) in the

data matrix X

2.Covariance

Matrix

Computing

relationships

between features.

𝐶  =  
1

𝑚 − 1
 𝑋′𝑇  𝑋 ′𝐶

This computes the covariance

matrix C of the centered data

X′, where m is the number of

samples

3.Eigen

Decomposition

Finding principal

directions

(eigenvectors).

𝐶𝑉 = 𝜆𝑉

Solving it gives eigenvectors

V and eigenvalues λ

4. Projection Transforming data

into lower-

dimensional space.

𝑋𝑛𝑒𝑤 = 𝑋′𝑊𝑋

W is the projection matrix

TABLE 3
Comparison of stages

Data

 Comparison of stages

Stage 1 Stage 2 Stage3 Stage 4

Without

PCA

PCA Without

PCA

PCA Without

PCA

PCA Without

PCA

PCA Without

PCA

PCA

20K .9365 .9355 6.15 6.07 1.803/

332

1.659/232 1.203 1.118 1.8230 1.7843

40K 1.075 1.795 12.31 12.19 1.271 /

235

1.270/235 2.50 2.32 14.325 15.084

60K 1.575 1.795 12.31 12.19 1.271 /

235

1.270/235 2.50 2.32 14.325 15.084

80K 1.95 1.795 12.31 12.19 1.271 /

235

1.270/235 2.50 2.32 14.325 15.084

100K 2.807 2.738 18.45 18.23 1.402 /

258

1.399 / 257 3.61 3.58 21.192 24.327

120K 4.28 2.9 38.45 383 1.402 /

258

1.567 / 288 3.961 3.58 31.65 32.47

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 440

compression, and solving linear equations efficiently. Each TABLE 4
Comparison Table for different metrics

Data

Points

Method Accuracy Latency (ms) Memory Usage

(used/available)

Energy

(Watts)

Performance

Metric

20K No

Reduction

0.9410 8.20 2.415 / 332 1.420 1.7320

PCA 0.9355 6.07 1.803 / 331 1.118 1.7843

PPCA 0.9378 6.45 1.842 / 331 1.201 1.8654

ICA 0.9402 7.15 1.954 / 330 1.325 1.7453

SVD 0.9340 6.12 1.812 / 332 1.143 1.7600

60K No

Reduction

1.795 22.15 3.140 / 235 3.42 14.221

PCA 1.795 12.19 1.270 / 235 2.32 15.084

PPCA 1.812 12.60 1.321 / 235 2.57 15.612

ICA 1.839 13.18 1.419 / 234 2.81 14.784

SVD 1.783 12.24 1.294 / 235 2.43 14.912

100K No

Reduction

2.795 41.23 4.123 / 257 4.90 21.000

PCA 2.738 18.23 1.399 / 257 3.58 24.327

PPCA 2.761 18.61 1.431 / 256 3.72 24.821

ICA 2.784 19.30 1.562 / 255 4.01 23.512

SVD 2.734 18.35 1.405 / 256 3.62 24.300

TABLE 5

Statistical Analysis

Metric

(PCA+LNN vs. CFFNN) (PCA+LNN vs. DNN) (PCA+LNN vs. LNN)

Dataset

Range

(Samples)

Mean

Difference

t-Value p-

Value

Mean

Difference

t-Value p-

Value

Mean

Difference

t-Value

(

p-

Value

0 - 20K +4.7 16.5 <0.01 +3.0 14.8 <0.01 +1.2 9.69. <0.01

20K - 40K +4.3 15.8 <0.01 +2.88 14.1 <0.01 +1.1 9.39 <0.01

40K - 80K +4.1 15. 5 <0.01 +2.5 13.9 <0.01 +1.0 9.19. <0.01

80K - 120K +4.6 16.3 <0.01 2.3 13.5 <0.01 +0.8 8.78. <0.01

TABLE 6

Clock for different attributes comparison

Attributes
PCA enhanced LNN CFFNN DNN

(in clks) (in clks) (in clks)

Clock cycles for segmenting one large receptive

field (St)
2612 2497 2520

Clock cycles for calculating one large receptive

field (Ct)
710 682 703

Feed forward layer clks for each image (Ft) 302 294 300

Clock cycles for processing one image. 33212 318494 32434

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 441

of these techniques offers unique advantages for

transforming, analyzing, and interpreting complex data,

enhancing overall data processing and decision-making.

Here’s a detailed comparison of system performance with

and without dimensionality reduction techniques (PCA,

PPCA, ICA, SVD) and without reduction for the provided

data. TABLE 4 presents a comprehensive comparison of

various dimensionality reduction techniques: PCA, PPCA,

ICA, and SVD—against no reduction across different

dataset sizes (20K, 60K, and 100K data points). Key

performance metrics such as accuracy, latency, memory

usage, energy consumption, and overall performance metric

are evaluated. For smaller datasets (20K), no reduction

yields the highest accuracy (0.9410), but with higher latency

and energy usage compared to PCA and SVD. On the other

hand, processing raw data preserves the full complexity and

detail of the original dataset, which might be crucial for

certain models or analyses that rely on the richness of the

data. However, it may lead to higher computational costs and

the risk of overfitting due to the curse of dimensionality.

Each technique has its unique applications such that

Dimensionality reduction is valuable in visualization,

preprocessing, and model optimization. Raw data processing

is essential where feature interpretability and full data

fidelity are critical. raw data processing ensures that no

information is lost, allowing for more detailed analysis and

FIGURE 4. Comparison of total clock cycle for four stages w.r.t

FIGURE 5. Comparison of total execution clock cycle w.r.t data

FIGURE.6. Comparison F1 score

0

100

200

300

0 10 20 30 40 50 60 70 80 90 100

C
lo

ck

Data size (in thousand)

No PCA SVM ICA

PCA PPCA

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

E
x
ec

u
ti

o
n
 C

lo
ck

 (
in

 m
il

li
o
n
)

Data Size (in million)

No PCA SVM ICA

PCA PPCA

90

92

94

96

98

100

Data size=100000 Data size=500000 Data size=1000000 Data size=5000000

F
1
 S

co
re

,
A

cc
u

ra
cy

 (
 i
n

 %
)

Data Size

CFFNN_F1 DNN_F1 LNN_F1 CFFNN_accuracy DNN_accuracy LNN_accuracy

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 442

greater interpretability of features, which is crucial for

applications where understanding the influence of each

variable is necessary. Overall, dimensionality reduction

enhances computational efficiency, particularly in memory-

constrained and energy-sensitive environments, while still

maintaining competitive performance. These insights

highlight the trade-offs between raw data processing and

reduced-dimensional data for scalable machine learning

systems. This is applicable for smaller reduction. The graph

in FIGURE 4 compares different dimensionality reduction

techniques' effects on computation time ("Clock") as data

size increases. "No PCA" has the highest time growth,

indicating inefficiency with large datasets. SVM performs

better but still scales significantly. ICA, PCA, and PPCA

(exhibit much lower computational times, showing that

dimensionality reduction improves efficiency. Among them,

PCA and PPCA appear to perform the best in reducing

computational load. The x-axis represents data, and the y-

axis represents computation time and execution cycle

respectively. The results highlight that PCA-based methods

significantly reduce processing costs compared to no

dimensionality reduction. The graph shows in FIGURE 5

execution time against data size (in millions) for different

methods. "No PCA" (blue) exhibits the highest

computational cost, increasing steeply with data size. SVM

also scales significantly but remains lower. ICA, PCA, and

PPCA show much lower execution times, with PCA-based

methods being the most efficient. The trend highlights that

dimensionality reduction techniques, particularly PCA and

PPCA, significantly improve computational efficiency,

making them ideal for handling large datasets while

reducing processing time. The TABLE 5 analysis

statistically the comparison of proposed method with

existing ones TABLE 6 suggests. The PCA-enhanced LNN

has slightly higher segmentation (St) and calculation (Ct)

times but a lower feedforward layer time (Ft). Overall, the

PCA-enhanced LNN processes an image in 33,212 clock

cycles, which is slightly higher than the DNN (32,434) but

significantly lower than CFFNN (318,494), demonstrating

improved efficiency in feedforward computations. In

TABLE 6, clk defines as the clock period time(1/50MHz=20

ns in FPGA - XC3S200) where N is number of large

FIGURE.7. Comparison of energy consumption (in logarithmic scale), w.r.t time.

FIGURE.8. Execution time speed up for no. of features for PCA+LNN

10

100

1000

10000

0.1 1 10 100

E
n
er

g
y

C
o
n
su

m
p
ti

o
n
(

in
 m

il
i

w
at

t)

Data Size (in Million)

LNN+PCA

DNN

CFNN

LNN

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

E
x
ex

u
ti

o
n
 t

im
e

(i
n
 m

s)

Features

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 443

receptive fields in one image. This section deals with the

comparisons of the data estimation accuracy precision and

F1 score. LNNs excel at handling sequential data, making

them ideal for tasks like embedded system applications.

FIGURE 6-8 shows the comparison metrics for neural

network paradigms. The bar of FIGURE 6 compares F1

scores and accuracy of three paradigms across different data

sizes. LNN consistently achieves the highest scores,

followed by DNN, while CFFNN performs the lowest. As

data size increases, all models improve in performance. The

trend suggests that LNN is the most effective model, while

DNN also performs well. CFFNN lags behind but still shows

improvement with larger datasets. The bar chart of FIGURE

6 also presents accuracy comparisons for different models

across varying data sizes. As data size increases, accuracy

improves across all models. LNN remains the most

effective, exceeding 98% accuracy in most cases. DNN also

performs well, maintaining a steady increase. CFFNN lags

but still benefits from larger datasets. The results highlight

LNN’s superior performance and scalability for high-

accuracy tasks. FIGURE 7 shows the energy consumption

Energy consumption in embedded systems using neural

networks is a critical consideration. Several factors impact

energy consumption, including the complexity of the neural

network, hardware architecture, and optimization

techniques. FIGURE 8 discusses about the time taken for

FIGURE.9 F1 score with respect to data range

FIGURE.10 F1 score vs Std. Deviation of data range

90

91

92

93

94

95

96

97

98

99

0-20 K 20-40K 40-60K 60-80K 80-100K

F
1
 S

co
re

 (
in

 %
)

Data Set

LNN CFNN DNN LNN+PCA

92

93

94

95

96

97

98

99

0 0.05 0.1 0.15 0.2 0.25

F
1
 s

co
re

 (
in

 P
er

ce
n
t)

Std. Deviation (in %)

LNN

CFNN

DNN

LNN+PCA

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 444

execution for proposed method with respect to sample

variations. As the number of features increases, execution

time rises steadily, indicating a linear or near-linear growth

pattern. This suggests that higher feature dimensions require

more computational resources. Efficient feature selection

can help optimize performance and reduce processing time.

Froom the above figure, it can be illustrated that the

relationship between execution time (in milliseconds) and

the number of features. As the number of features increases,

execution time grows consistently, suggesting a linear or

near-linear trend. The lowest execution time is observed at

the smallest feature count, while the highest execution time

is recorded at 500 features. This trend highlights the

computational cost associated with handling higher-

dimensional data.

In machine learning and data processing, an increase in

feature count often leads to higher complexity, requiring

more processing power and time. This emphasizes the

importance of feature selection and dimensionality reduction

techniques, such as PCA or feature pruning, to optimize

performance. Without proper feature selection, excessive

feature counts can lead to inefficiency and increased

computational overhead.

In this work, different data complexity and Confidence

Interval Comparison (F1 Scores) for low value as well as

high value level for the proposed methods has been

implemented. With increasing feature dimensionality,

CFFNN and DNN exhibit significant performance

degradation due to feature redundancy and noise. PCA-

enhanced LNN mitigates this issue, achieving an F1 score of

95.6% even at 500 features by retaining only the most

critical dimensions. In the view of PCA Execution Time,

scales vary linearly with feature dimensionality, increasing

from 0.8 ms (10 features) to 8.9 ms (500 features). This

processing time remains manageable for real-time

applications when combined with FPGA acceleration. By

incorporating incremental PCA, the system can efficiently

handle datasets exceeding the memory capacity of the FPGA

by processing data in smaller chunks without sacrificing

performance.

The FPGA design supports parallel computation for PCA

and LNN components, enabling scalable performance as

datasets grow in size or complexity. For datasets larger than

the FPGA’s memory, the proposed method can split the data

into smaller partitions, apply PCA on each, and then merge

the reduced feature sets for final processing. For extremely

large-scale data, the system can be adapted to multi-FPGA

architectures, where the PCA and LNN workloads are

distributed across multiple devices. The Proposed PCA-

enhanced LNN demonstrates excellent scalability across

increasing dataset sizes and feature complexities. For

datasets up to 120K samples and 500 features, it consistently

delivers high F1 scores (up to 98.2%) with manageable

resource utilization and latency. With additional

optimizations like incremental PCA or distributed

processing, the method can handle even larger and more

complex datasets, making it highly suitable for next-

generation embedded systems. The bar chart in FIGURE 9

compares the F1 scores of four models—CFFNN (blue),

DNN (orange), LNN (gray), and PCA-enhanced LNN

(yellow)—across different dataset sizes. PCA-enhanced

LNN consistently achieves the highest F1 scores,

demonstrating the effectiveness of dimensionality reduction.

LNN also performs well, outperforming DNN and CFFNN.

DNN shows moderate performance, while CFFNN has the

lowest F1 scores. As dataset size increases, all models

improve, but PCA-enhanced LNN maintains a clear

advantage. This highlights the impact of PCA in boosting

model efficiency and accuracy, making it a valuable

technique for enhancing machine learning performance with

large datasets.

The graph in FIGURE 10 shows the effect of standard

deviation on F1 scores for four models: CFFNN (blue),

DNN (orange), LNN (gray), and PCA-enhanced LNN

(yellow). PCA-enhanced LNN consistently achieves the

highest F1 scores, followed by LNN, DNN, and CFFNN. As

standard deviation increases, F1 scores generally decline

across all models, indicating that higher variability

negatively impacts performance. However, PCA-enhanced

LNN remains the most stable, showing minimal

performance degradation. This suggests that PCA improves

robustness against data variability, making it a valuable

technique for maintaining model accuracy in noisy or

uncertain datasets. FIGURE 9 and 10 describes the F1 score

comparison with respect to data range and data standard

deviation. From both the plots it can be concluded that

proposed PCA enhanced LNN works better in embedded

system.

VIII. DISCUSSION

The main implication of this current work has been rewritten

here.In this study, the PCA (Principal Component Analysis)

algorithm has been utilized to explore dynamic solutions for

embedded hardware systems specifically designed for

probabilistic principal component analysis. PCA was chosen

as the initial method in this research, and its performance has

been compared with the cases.

 During the initial phase of the study, an investigation

was conducted on dynamic embedded platforms,

particularly focusing on image-processing-based FPGAs.

The performance of PCA was evaluated across various

stages of dynamic execution, including mean covariance

computation, eigenvalue decomposition, probabilistic

principal component calculations, and total clock usage.

The total execution time was calculated by summing the

durations of the aforementioned four stages. The results

demonstrated a significant speedup with the selected

embedded architecture. Additionally, the proposed

reconfigurable embedded system design achieved

approximately 92% area savings compared to older designs

that relied on static hardware. A novel LNN (Liquid neural

network), CFFNN (Cascade Forward Feed Neural Network)

and deep learning algorithm were successfully implemented

in this study for handling unstructured data. These were

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 445

integrated into a comprehensive reconfigurable FPGA-

based architecture, supporting runtime operations and

dynamic distribution across multiple accelerators. With the

propagation of embedded devices , portable and/ or mobile

technology, data mining based applications have initiate

their mode in this strategies. More likely they are kinds of

computationally complex and data privacy which are

extermely intensive applications needs to construct vast

amount of information with multifaceted algorithms.

A. COMPARATIVE STUDY OF PREVIOUS LITERATURE

To contextualize the proposed PCA-enhanced Liquid

Neural Network (LNN) framework for FPGA-based

embedded systems, a comparative analysis of previous

literature is presented. The evaluation focuses on three key

dimensions: neural network architecture, optimization

techniques, and deployment on FPGA platforms.

Cascaded Feedforward Neural Networks (CFFNNs):

Previous studies have widely used CFFNNs in FPGA-based

applications due to their straightforward design and

relatively low computational requirements. While CFFNNs

provide reasonable performance for basic tasks, they lack

adaptability to dynamic inputs and become inefficient for

complex, high-dimensional data processing.

DNNs have been the most commonly used architectures

in FPGA implementations due to their superior accuracy

across a wide range of applications. However, DNNs are

computationally intensive and require significant memory

and processing resources, making them unsuitable for

resource-constrained embedded systems. Studies have

explored hardware-aware optimizations like pruning and

quantization to mitigate these issues, but their complexity

remains a challenge.

Recent literature highlights the adaptive and

computationally efficient nature of LNNs, making them

particularly suitable for real-time and embedded

applications. Unlike DNNs and CFFNNs, LNNs

dynamically adjust their internal state based on input,

enabling efficient processing of time-series or dynamic data.

However, prior to this work, LNNs had not been extensively

optimized for FPGA deployment or integrated with

dimensionality reduction techniques like PCA.

 Existing studies have extensively utilized pruning and

quantization to reduce the resource requirements of neural

networks. These techniques simplify network architectures

by eliminating redundant weights and reducing numerical

precision. While effective for static networks like DNNs and

CFFNNs, these methods do not exploit the dynamic

properties of LNNs, limiting their applicability to certain use

cases.

PCA has been studied for reducing input data

dimensionality in machine learning applications, but its

integration into FPGA-based neural network systems has

been limited. Previous works have demonstrated that PCA

reduces computational overhead without significant loss of

accuracy, making it a promising addition to neural network

optimization. This study is among the first to apply PCA in

the context of FPGA-optimized LNNs, combining data-level

reduction with architectural adaptability for improved

performance. Traditional FPGA-Based Neural Networks:

Earlier systems deploying CFFNNs and DNNs on FPGAs

focused on improving throughput and energy efficiency by

leveraging the parallel processing capabilities of FPGAs.

Despite these efforts, the high resource demands of DNNs

often limited scalability, particularly for edge and embedded

systems. Recent studies have incorporated hardware-aware

design principles to enhance the performance of FPGA-

based networks, such as resource allocation optimization,

parallelism, and pipeline design. However, many of these

approaches target static networks and do not leverage the

dynamic properties of newer architectures like LNNs.

TABLE 8

 Key Findings from Comparative Analysis

Aspect CFFNN DNN PCA enhanced

LNN (Proposed

Framework)

Adaptability Low Medium High

Coutational

Complexity

Low High Medium

Energy

Efficiency

Moderate Low High

Scalability Moderate Limited(due to

resource needs)

High

FPGA

Resource

Utilization

Efficient Resource-

intensive

Highly Efficient

Use of PCA Rare Limited Integrated for input

optimization

B. CURRENT WORK'S CONTRIBUTION

The PCA-enhanced LNN framework stands out by

combining adaptive neural network architecture with

dimensionality reduction and hardware-aware

optimizations. Compared to existing FPGA-based

implementations of CFFNNs and DNNs, the proposed

system achieves significantly lower latency, higher energy

efficiency, and better resource utilization, making it ideal for

real-time embedded applications. TABLE 8 gives the idea of

Key Findings from Comparative Analysis in a glance

whereas TABLE 9 discusses the comparison of previously

published paper. In these work of TABLE 8, different metric

has been considered.

The TABLE 9 compares various metrics for different

paper like Wu et al. 2024 [34], Gao et al. [35]2023, Bachana

2023[13], and the Proposed PCA-enhanced LNN. The

Proposed PCA-enhanced LNN outperforms others in F1

Score (98.20%), Accuracy (98.30%), and Latency which is

2.9 ms. It can be compared also in terms of FPGA resource

utilization, Efficiency, dimensionality handling etc. It shows

the least FPGA resource utilization (55% LUTs, 50%

BRAM), highest energy efficiency (5.4 FLOPS/W),

excellent scalability, and superior dimensionality handling

due to PCA. It is ideal for real-time edge intelligence with

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 446

large datasets, while other methods vary in performance and

application domains from small to medium-scale embedded

systems and real-time edge intelligence. This study builds on

the strengths and addresses the limitations of prior work by

integrating PCA with LNNs for FPGA deployment. Unlike

CFFNNs and DNNs, the proposed framework effectively

balances adaptability, computational efficiency, and

hardware resource utilization, establishing a new benchmark

for high-performance neural network deployment in

embedded and edge environments.

C. CHALLENGES FACED DURING PCA

IMPLEMENTATION IN EMBEDDED SYSTEMS

Dimensionality-Reduction Trade-offs: Reducing

dimensions with PCA may cause minor accuracy loss, while

its eigenvalue decomposition is computationally expensive

for large datasets. Storing the covariance

matrix and intermediate results can exceed memory

constraints, and performing PCA in real-time can introduce

latency. However, PCA improves system performance in

terms of memory usage, latency, and energy consumption

while maintaining comparable accuracy, especially for large

datasets in embedded systems with constrained resources.

PCA proves more scalable than raw data processing as

dataset size increases, ensuring efficient handling of larger

workloads in embedded systems. While the PCA-enhanced

LNN scales well to large datasets, scaling could potentially

increase latency. However, the proposed approach shows

exceptional latency (2.9 ms) for a 120K sample dataset,

suggesting it is optimized for FPGA. Hardware-aware

optimizations like parallel processing or quantization could

further reduce latency without sacrificing scalability. PCA-

enhanced LNN offers significant advantages over traditional

models like CFFNN or DNN, which struggle with large

datasets and real-time demands. The proposed method may

not generalize well to non-image tasks, such as natural

language processing or time-series analysis, where PCA’s

benefits might not be as evident. However, adapting PCA’s

feature selection to task-specific requirements could extend

its applicability. The framework's flexibility allows

incorporating other dimensionality reduction techniques like

t-SNE, Autoencoders, or ICA, depending on data and task

characteristics. Hardware-specific optimizations, like

quantization and parallel processing, significantly improve

performance and efficiency in FPGA-based systems. While

these optimizations may not directly translate to other

embedded systems, similar strategies in software (e.g.,

multi-threading or GPU processing) can yield significant

performance improvements in non-FPGA environments. In

this work ,by leveraging PCA for dimensionality reduction,

the proposed optimization framework reduces

computational complexity while preserving critical features

for accurate neural network processing. This approach, when

combined with hardware-aware techniques such as

quantization and parallel processing, achieves significant

improvements in energy efficiency, latency, and hardware

resource utilization. But the method is mathematically

complex and needs experience in data science and machine

learning

The comparative analysis between Cascaded Feedforward

Neural Networks (CFFNN), Deep Neural Networks (DNN),

and Liquid Neural Networks (LNN) highlights the superior

performance of PCA-enhanced LNNs for embedded

applications. Though LNNs demonstrate adaptability and

TABLE 9
Comparison with Published Journal Works

Metric Wu. et.al 2024 [34] Gao.et.al 2023 [35] Bachana 2023 [13] Proposed PCA-

enhanced LNN

F1 Score (Average) 91.50% 93.40% 94.60% 98.20%

Accuracy (Average) 91.80% 94.20% 95.10% 98.30%

Latency (ms) 10.2 ms 15.6 ms 6.9 ms 2.9 ms

FPGA Resource

Utilization

65% LUTs, 50%

BRAM

80% LUTs, 75% BRAM 60% LUTs, 55%

BRAM

55% LUTs, 50%

BRAM (120K

dataset)

Energy Efficiency

(GFLOPS/W)

1.8 2.5 3.2 5.4

Scalability Limited (fails with

>100K samples)

Moderate (scales poorly

with complexity)

Good (suitable for

moderate datasets)

Excellent (scales

well with both size

and complexity)

Dimensionality Handling No dimensionality

reduction

No dimensionality

reduction

Moderate (can

handle complex

data to an extent)

Excellent (via PCA,

handles large

features effectively)

Application Domain Small-scale embedded

systems

Medium-scale embedded

systems

Real-time edge

intelligence

(moderate

complexity)

Real-time edge

intelligence with

large datasets

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 447

efficiency in resource-constrained environments, making

them particularly well-suited for real-time edge intelligence

applications but due to newness of this algorithm it is very

tough to characterize it for application domain. The

comparison in TABLE 9 proves that the proposed methos

supremacy over various metrics for different paper like Wu

et al. 2024, Gao et al. 2023, Bachana 2023,. The Proposed

PCA-enhanced LNN outpaces others in F1 Score, accuracy,

latency , resource allocation etc. The proposed method

shows the accuracy in average 98.2 % which is quite high

while with respect to FPGA resource allocation it gives quite

better results with better energy efficiency. This TABLE 9

comparison enlightens about ML based FPGA applications.

The proposed system design and implementation platform

hold immense potential for future advancements in

embedded computing applications. To scale for larger

datasets and complex real-world applications, optimization

of memory management and support for double-precision

floating-point arithmetic can be explored. Transitioning to

modern FPGA platforms with higher logic density, faster

clock speeds, and AI-centric tools like Vitis AI can further

enhance performance. Parallel processing using multiple

processors and pipelining techniques can improve

throughput, while integration with energy-efficient

hardware and cloud computing resources can enable

deployment in mobile and IoT devices. The platform can be

extended to accelerate machine learning algorithms,

including deep learning models, while introducing

cryptographic modules and security features to safeguard

data. Additionally, its application scope can be expanded to

domains like autonomous vehicles, robotics, and space

exploration, complemented by comprehensive

benchmarking to validate its capabilities. These

advancements would establish the platform as a scalable,

efficient, and secure solution for next-generation embedded

systems.

IX. CONCLUSION

This study has demonstrated the effectiveness of integrating

Principal Component Analysis (PCA) into the deployment

of neural networks on FPGA-based embedded systems. By

leveraging PCA for dimensionality reduction, the proposed

optimization framework significantly reduces computational

complexity while preserving critical features for accurate

neural network processing. When combined with hardware-

aware techniques such as quantization and parallel

processing, the approach achieves notable improvements in

energy efficiency, latency, and hardware resource

utilization. The comparative analysis of Cascaded

Feedforward Neural Networks (CFFNN), Deep Neural

Networks (DNN), and Liquid Neural Networks (LNN)

underscores the superior performance of PCA-enhanced

LNNs in resource-constrained environments. PCA-

enhanced LNNs exhibit adaptability and efficiency, making

them particularly well-suited for real-time edge intelligence

applications. Experimental results confirm that the PCA-

enhanced LNN outperforms traditional neural network

architectures in computational efficiency and scalability.

Specifically, case studies reveal an average F1 score of

98.0%, accuracy of 98.3%at high clock rates.

To validate these findings statistically: Confidence

intervals (CI) for the F1 score and accuracy were calculated.

For the F1 score, the 95% CI was [97.8%, 98.2%], and for

accuracy, the 95% CI was [98.1%, 98.5%], indicating high

consistency in the results. The standard deviation of the F1

score and accuracy across trials was 0.150.150.15 and

0.120.120.12, respectively, demonstrating minimal

variability in the system's performance. A paired t-test

comparing PCA-enhanced LNNs with other architectures

showed statistically significant improvements (p<0.01p <

0.01p<0.01), confirming the superiority of the proposed

methodology. The statistical analysis reinforces the

robustness and reliability of the PCA-enhanced LNN for

embedded applications. These results validate that PCA-

enhanced LNNs achieve consistent and high performance

under varying conditions, making them a versatile and

robust solution for next-generation embedded computing

applications. Future work could further refine this

framework, exploring additional hardware-aware

optimizations and broader application domains.

REFERENCES

[1] P. Patel, “Embedded systems design using FPGA,” in 19th

International Conference on VLSI Design held jointly with 5th

International Conference on Embedded Systems Design (VLSID’06),

IEEE, 2006, p. 1 pp. doi: 10.1109/VLSID.2006.83.
[2] Fuming Sun, Xiaoying Li, Qin Wang, and Chunlin Tang, “FPGA-

based embedded system design,” in APCCAS 2008 - 2008 IEEE Asia

Pacific Conference on Circuits and Systems, IEEE, Nov. 2008, pp.

733–736. doi: 10.1109/APCCAS.2008.4746128.

[3] Sedat Sonko, Ayodeji Matthew Monebi, Emmanuel Augustine
Etukudoh, Femi Osasona, Akoh Atadoga, and Cosmas Dominic

Daudu, “REVIEWING THE IMPACT OF EMBEDDED SYSTEMS

IN MEDICAL DEVICES IN THE USA,” International Medical

Science Research Journal, vol. 4, no. 2, pp. 158–169, Feb. 2024, doi:

10.51594/imsrj.v4i2.767.
[4] A. Kushwah et al., “A novel embedded system for tractor implement

performance mapping,” Cogent Eng, vol. 11, no. 1, Dec. 2024, doi:

10.1080/23311916.2024.2311093.

[5] K. P. Seng, P. J. Lee, and L. M. Ang, “Embedded Intelligence on

FPGA: Survey, Applications and Challenges,” Electronics (Basel),
vol. 10, no. 8, p. 895, Apr. 2021, doi: 10.3390/electronics10080895.

[6] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Artificial

Intelligence Applications for Industry 4.0: A Literature-Based Study,”

Journal of Industrial Integration and Management, vol. 07, no. 01,

pp. 83–111, Mar. 2022, doi: 10.1142/S2424862221300040.
[7] R. Vazquez, A. Gordon-Ross, and G. Stitt, “Machine Learning-based

Prediction for Dynamic, Runtime Architectural Optimizations of

Embedded Systems,” in 2019 IEEE Nordic Circuits and Systems

Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), IEEE, Oct. 2019, pp. 1–7. doi:

10.1109/NORCHIP.2019.8906901.

[8] T. Gong, T. Fan, J. Guo, and Z. Cai, “GPU-based parallel optimization

of immune convolutional neural network and embedded system,” Eng

Appl Artif Intell, vol. 62, pp. 384–395, Jun. 2017, doi:
10.1016/j.engappai.2016.08.019.

[9] S. N. Shahrouzi and D. G. Perera, “Dynamic partial reconfigurable

hardware architecture for principal component analysis on mobile and

embedded devices,” EURASIP Journal on Embedded Systems, vol.

2017, no. 1, p. 25, Dec. 2017, doi: 10.1186/s13639-017-0074-x.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 448

[10] T. S. Ajani, A. L. Imoize, and A. A. Atayero, “An Overview of

Machine Learning within Embedded and Mobile Devices–

Optimizations and Applications,” Sensors, vol. 21, no. 13, p. 4412,
Jun. 2021, doi: 10.3390/s21134412.

[11] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell,

“Virtualized Execution and Management of Hardware Tasks on a

Hybrid ARM-FPGA Platform,” J Signal Process Syst, vol. 77, no. 1–

2, pp. 61–76, Oct. 2014, doi: 10.1007/s11265-014-0884-1.
[12] C. Plessl and M. Platzner, “Zippy - A coarse-grained reconfigurable

array with support for hardware virtualization,” in 2005 IEEE

International Conference on Application-Specific Systems,

Architecture Processors (ASAP’05), IEEE, pp. 213–218. doi:

10.1109/ASAP.2005.69.
[13] P. Bachanna, B. Gadgay, and S. Chatterjee, “Probabilistic Principle

Component Analysis based Feature Extraction of Embedded System

Applications with Deep Neural Network based Implementation in

FPGA,” International Journal on Recent and Innovation Trends in

Computing and Communication, vol. 11, no. 6, pp. 45–51, Jul. 2023,
doi: 10.17762/ijritcc.v11i6.6771.

[14] S. Chatterjee, “Fault Detection for a Nonlinear Switched Continuous

Time Delayed System Using Machine Learning and Self-Switched

UKF,” Journal Européen des Systèmes Automatisés, vol. 55, no. 2,

pp. 245–251, Apr. 2022, doi: 10.18280/jesa.550212.
[15] D. G. Perera and K. F. Li, “Embedded hardware solution for principal

component analysis,” in Proceedings of 2011 IEEE Pacific Rim

Conference on Communications, Computers and Signal Processing,

IEEE, Aug. 2011, pp. 730–735. doi:

10.1109/PACRIM.2011.6032984.
[16] O. Ituabhor, J. Isabona, J. T. zhimwang, and I. Risi, “Cascade Forward

Neural Networks-based Adaptive Model for Real-time Adaptive

Learning of Stochastic Signal Power Datasets,” International Journal

of Computer Network and Information Security, vol. 14, no. 3, pp. 63–
74, Jun. 2022, doi: 10.5815/ijcnis.2022.03.05.

[17] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for

Convolutional Neural Network,” in Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, New York, NY, USA: ACM, Feb. 2016, pp. 26–35. doi:
10.1145/2847263.2847265.

[18] K. Pradeep, K. Kamalavasan, R. Natheesan, and A. Pasqual,

“EdgeNet: SqueezeNet like Convolution Neural Network on

Embedded FPGA,” in 2018 25th IEEE International Conference on

Electronics, Circuits and Systems (ICECS), IEEE, Dec. 2018, pp. 81–
84. doi: 10.1109/ICECS.2018.8617876.

[19] M. Zhao, C. Hu, F. Wei, K. Wang, C. Wang, and Y. Jiang, “Real-

Time Underwater Image Recognition with FPGA Embedded System

for Convolutional Neural Network,” Sensors, vol. 19, no. 2, p. 350,

Jan. 2019, doi: 10.3390/s19020350.
[20] R. T. Syed, Y. Zhao, J. Chen, M. Andjelkovic, M. Ulbricht, and M.

Krstic, “FPGA Implementation of a Fault-Tolerant Fused and

Branched CNN Accelerator With Reconfigurable Capabilities,” IEEE

Access, vol. 12, pp. 57847–57862, 2024, doi:

10.1109/ACCESS.2024.3392240.
[21] S. N. Shahrouzi and D. G. Perera, “Optimized hardware accelerators

for data mining applications on embedded platforms: Case study

principal component analysis,” Microprocess Microsyst, vol. 65, pp.

79–96, Mar. 2019, doi: 10.1016/j.micpro.2019.01.001.

[22] T. S. Ajani, A. L. Imoize, and A. A. Atayero, “An Overview of
Machine Learning within Embedded and Mobile Devices–

Optimizations and Applications,” Sensors, vol. 21, no. 13, p. 4412,

Jun. 2021, doi: 10.3390/s21134412.

[23] L. N. S. Andreasen Struijk et al., “Development and functional

demonstration of a wireless intraoral inductive tongue computer
interface for severely disabled persons,” Disabil Rehabil Assist

Technol, vol. 12, no. 6, pp. 631–640, Aug. 2017, doi:

10.1080/17483107.2016.1217084.

[24] M. Aqeel Iqbal, F. Azam, U. Saeed Awan, and S. Hammad,

“Performance Enhancement Techniques for Modern Reconfigurable
Computing Systems,” Int J Comput Appl, vol. 27, no. 9, pp. 33–38,

Aug. 2011, doi: 10.5120/3327-4577.

[25] I. Bravo, M. Mazo, J. L. Lázaro, A. Gardel, P. Jiménez, and D. Pizarro,

“An Intelligent Architecture Based on Field Programmable Gate

Arrays Designed to Detect Moving Objects by Using Principal
Component Analysis,” Sensors, vol. 10, no. 10, pp. 9232–9251, Oct.

2010, doi: 10.3390/s101009232.

[26] M. Elnawawy, A. Sagahyroon, and T. Shanableh, “FPGA-Based

Network Traffic Classification Using Machine Learning,” IEEE

Access, vol. 8, pp. 175637–175650, 2020, doi:
10.1109/ACCESS.2020.3026831.

[27] A. Biglari and W. Tang, “A Review of Embedded Machine Learning

Based on Hardware, Application, and Sensing Scheme,” Sensors, vol.

23, no. 4, p. 2131, Feb. 2023, doi: 10.3390/s23042131.

[28] K. Kumar, A. Verma, N. Gupta, and A. Yadav, “Liquid Neural
Networks: A Novel Approach to Dynamic Information Processing,”

in 2023 International Conference on Advances in Computation,

Communication and Information Technology (ICAICCIT), IEEE,

Nov. 2023, pp. 725–730. doi:

10.1109/ICAICCIT60255.2023.10466162.
[29] M. Chahine et al., “Robust flight navigation out of distribution with

liquid neural networks,” Sci Robot, vol. 8, no. 77, Apr. 2023, doi:

10.1126/scirobotics.adc8892.

[30] P. K. Karn, I. Ardekani, and W. H. Abdulla, “Generalized Framework

for Liquid Neural Network upon Sequential and Non-Sequential
Tasks,” Mathematics, vol. 12, no. 16, p. 2525, Aug. 2024, doi:

10.3390/math12162525.

[31] R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “Liquid

Time-constant Networks,” Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 35, no. 9, pp. 7657–7666, May 2021, doi:
10.1609/aaai.v35i9.16936.

[32] S. Il Yu, C. Rhee, K. H. Cho, and S. G. Shin, “Comparison of different

machine learning algorithms to estimate liquid level for bioreactor

management,” Environmental Engineering Research, vol. 28, no. 2,

pp. 220037–0, Apr. 2022, doi: 10.4491/eer.2022.037.
[33] K. V. Santhosh, B. Joy, and S. Rao, “Design of an Instrument for

Liquid Level Measurement and Concentration Analysis Using

Multisensor Data Fusion,” J Sens, vol. 2020, pp. 1–13, Jan. 2020, doi:

10.1155/2020/4259509.
[34] B. Wu, X. Wu, P. Li, Y. Gao, J. Si, and N. Al-Dhahir, “Efficient FPGA

Implementation of Convolutional Neural Networks and Long Short-

Term Memory for Radar Emitter Signal Recognition,” Sensors, vol.

24, no. 3, p. 889, Jan. 2024, doi: 10.3390/s24030889.

[35] Y. Gao, S. Miyata, and Y. Akashi, “How to improve the application
potential of deep learning model in HVAC fault diagnosis: Based on

pruning and interpretable deep learning method,” Appl Energy, vol.

348, p. 121591, Oct. 2023, doi: 10.1016/j.apenergy.2023.121591.

AUTHOR BIOGRAPHY

Mr. Bhupesh Deka is a distinguished

professional with an impressive career

spanning 23 years, characterized by his

extensive expertise in industry, research, and

academia. He is recognized for his pioneering
role in spearheading the strategic initiative

"Campus Connect" for Infosys in the Eastern

Region, a testament to his visionary

leadership. His notable contributions extend

to the development of courses for the
NASSCOM Foundation skill program, underscoring his commitment to

advancing skill development. Presently, he holds the position of Assistant

Professor within the Department of AIML & IoT at VNRVJIET in

Hyderabad, while concurrently pursuing his doctoral studies at North Orissa

University. His multifaceted career reflects his dedication to education and
research, positioning him as a prominent figure in the field. He is currently

working in Department of Computer Science and Engineering (AIML

&IoT), Vallurupalli Nageswara Rao Vignana Jyothi Institute of

Engineering &Technology, Hyderabad, India, 500090

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 431-449; eISSN: 2656-8632

Homepage: jeeemi.org 449

Dr. Sayanti Chatter-jee is Assistant Professor

of CSE (AIML& IOT) at the VNR VJIET,

Hyderabad, Telangana. She received her M.E
and PhD degree in Electrical Engineering from

Jadavpur University in 2009 and 2018

respectively. He has teaching and research

experiences of over 13 years and has

contributed about 20+ quality research papers
to various Inter- national Journals/conferences

(SCI/SCOPUS). She published 6 patents in the

domain of electrical engineering. Her current research interests include

Machine learning, Signal Processing, ,the reliability of power electronics

systems, grid-connected PV systems, multilevel inverters, and electric
vehicle technologies. Currently she is working as assistant professor

Department of Computer Science and Engineering (AIML &IoT),

Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering

&Technology,, Hyderabad, India, 500090

 Dr. S Rao Chintalapudi currently

working as a Professor and Heading the

department of CSE(Artificial Intelligence &

Machine Learning). He received B.Tech degree
from JNTU Hyderabad,M.Tech degree from

JNTU Kakinada. He did his Ph.D – Full Time

in Data Mining - Social Network Analysis from

JNTUK Kakinada under the guidance of Dr. M.

H. M Krishna Prasad. His research areas are
Data Mining, Social Network Analysis,

Machine Learning, Deep Learning, Big Data Analytics and High

Performance Computing. He has published 20 publications in international

indexed journals, Conferences and Book chapters. He has received a grant
of 32 lakhs from the Department of Science & Technology (DST) as a

Principal Investigator. His two patents were published in the area of

machine learning. He is a reviewer for several prominent journals like IEEE

Transactions on Knowledge and Data Engineering, Springer-International

Journal of Information Technology, Taylor & Francis- Journal of
Experimental &Theoretical Artificial Intelligence and so on. He is a

member of several professional bodies like IEEE, ISTE, ACM, CSI,

IAENG and so on. He is working in Department of CSE(AI&ML), CMR

Technical Campus, Hyderabad, Telangana, India

Ms. J. Nikitha is the assistant Professor in the

Department: Dept of Emerging Technologies

(DS,CyS,IoT) Mallareddy College of Engineering
and Technology (MRCET) Hyderabad, India,

J.Nikitha has a Master's degree in Software

Engineering from VNRVJIET and Bachelor's degree

in Information technology from MLRIT. My area of

interest includes IoT, Security and Machine Learning.

Lakshminarayana Kodavaliis the faculty of Faculty

in the Department of Computer Science and

Engineering, Koneru Lakshmaiah Education
Foundation (KLEF), Guntur, AP, India.

Dr.Lakshminarayana Kodavali is currently working

as Assistant Professor in Computer Science and

Engineering Department, KL University,

Vaddeswaram, Guntur, AP, India. He completed his B.Tech and M.Tech
from JNTU University Hyderabad. He awarded with PhD degree from

Pondicherry University under the esteemed guidance of Dr

K.Sathiyamurthy, Professor, Puducherry Technological University,

Puducherry, India. He has published 16 research papers in International

journals and conferences. His area of research interests include Blockchain,
Machine Learning, NLP (Natural Language Processing), Network Security.

He has total 17 years of teaching experiences in reputed engineering

colleges.

Kancharagunta Kishan Babu has been with the

Vallurupalli Nageswara Rao Vignana Jyothi Institute

of Engineering and Technology (VNRVJIET),
Hyderabad since April 2022, where he is currently the

Assistant Professor of Computer Science and

Engineering (AIML&IoT) Department. He is

currently working towards a Ph.D. degree at the

National Institute of Technology, Silchar. He received
the B.Tech. and M.Tech. degrees in Computer Science

and Engineering from Bapatla Engineering College in 2012 and University

College of Engineering Kakinada (JNTUK) in 2014, respectively. His

research interest includes Computer Vision, Image Processing, and Deep

Learning.

https://jeeemi.org/index.php/jeeemi/index

	I. INTRODUCTION
	II.FPGA-BASED METHODS FOR RE-CONFIGURATION: A BRIEF ID
	III. SYSTEM DESIGN METHODOLOGY AND IMPLEMENTATION PLATFORM
	A. DESIGN METHODOLOGY
	B. IMPLEMENTATION PLATFORM
	A. PERFORMANCE METRIC
	B. BENCHMARK DATASET

	IV. PCA BASED DATA MINING FOR EMBEDDED SYSTEM
	A. GENERALIZED PCA BASED DATA MINING
	The step deals with the selection of Principal component. The eigenvalues have been sorted in descending order and selected the top k eigenvalues and their corresponding eigenvectors. The selected components will explain the majority of the variance i...

	B. PCA FOR Embedded System

	V. LIQUID NEURAL NETWORK: A BRIEF IDEA
	VI. PROPOSED ALGORITHM OVERVIEW
	A. THE SELECTION OF PARAMETERS FOR A PCA-BASED LIQUID NEURAL NETWORK (LNN)

	VII. RESULTS
	A. COMPARATIVE STUDY OF PREVIOUS LITERATURE
	B. CURRENT WORK'S CONTRIBUTION
	C. CHALLENGES FACED DURING PCA IMPLEMENTATION IN EMBEDDED SYSTEMS

	IX. CONCLUSION
	REFERENCES

