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ABSTRACT  Online games have become a popular form of entertainment, particularly for relieving stress, and the rise in 

online gaming has led to an increase in problematic gaming behaviors. Excessive use of the internet for gaming has raised 

concerns about its neurophysiological impact, particularly on cognitive and emotional functions. Electroencephalogram 

(EEG) and Event-Related Potential (ERP) analysis are valuable tools for monitoring these effects. Given the vast amount of 

features that can be extracted from EEG signals, it is crucial to apply efficient feature selection methods to identify the most 

informative ones. This study utilizes the Go/No-Go Association Task (GNAT) combined with the recording of 16-channel 

EEG signals, chosen as the data-recording method to observe the response of individuals who are problematic online gamers 

to several stimulus themes. The participants in this study were individuals identified as problematic gamers, with verification 

conducted by psychologists to ensure their eligibility as research subjects. In this context, metaheuristic algorithms like 

Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO) are employed to enhance 

feature selection. A hybrid approach, combining one of these methods with Binary Stochastic Fractal Search (B-SFS), is 

proposed to improve classification accuracy and optimize feature selection. The results demonstrate that the hybridization of 

the best algorithm with B-SFS successfully selects the optimal features, achieving perfect classification performance, with an 

accuracy, sensitivity, and specificity of 1.00 for all respondents. This emphasizes the effectiveness of B-SFS, particularly its 

diffusion process, where Gaussian distribution facilitates the search for the best solution, thereby improving the reliability of 

feature selection for detecting problematic gaming behavior. 

INDEX TERMS Electroencephalograph, Event-Related Potential, Go/No-Go Association Task, Metaheuristic Algorithm, 

Problematic Online Gamers 

I.  INTRODUCTION 

Games are a form of entertainment that is popular among 

people of all ages for relieving stress. Online games have 

become a popular choice because of their features that offer 

limitless competitive experiences, complex narratives and 

characters, as well as opportunities to socialize with other 

players via the internet connection [1]. The growing interest in 

online games has been increasing every year. According to the 

Digital 2024 report, Indonesia ranks first in the world for the 

number of online game players in the age range of 16-64 years, 

with a percentage of 96.5%. This increase has a positive 

impact on the economy. In 2024, the video game market in 

Indonesia is projected to generate a revenue of USD 1.232 

million, with an annual growth rate of 7.32% until 2027. The 

increased availability of affordable internet and widespread 

use of hardware have made Indonesia one of the largest and 

most promising video game markets in Southeast Asia, with 

an estimated 53.8 million gamers by 2027 [2]. 

However, the rise in online game players has also brought 

about a challenge, one of which is the increase in players who 

excessively use the internet, leading them to become 

problematic game players. According to research by Lopez-

Fernandez et al. [3], Indonesia has a problematic internet use 

rate of 4.7%, the highest compared to fifteen countries from 
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Europe, America, and Asia, with a specific problematic 

gaming rate of 4%. According to research by Shi et al. [4], 

individuals who repeatedly and persistently play video games 

not just for fun but as an important activity to cope with life's 

stress are prone to becoming problematic game players. The 

problematic gaming behavior exhibited by these players can 

lead to various risks, such as addiction, increased tolerance 

towards playing needs, and decreased interest in other 

activities. Zajac et al. [5] and Kashif et al. [6] confirm that 

video game addiction is related to various psychological 

issues, such as sleep disorders, decreased daily performance, 

and Attention Deficit Hyperactivity Disorder (ADHD). In 

some cases, this condition can even lead to serious 

consequences such as seizures or death caused by gaming 

activities. This addiction is referred to as Behavioral 

Addiction, which makes the sufferer vulnerable to various 

factors such as psychological conditions, stress, environment, 

and easy access to games, ultimately forming a harmful 

playing pattern [1]. These findings highlight the importance of 

monitoring and managing gaming behavior, which can be 

done using Electroencephalogram (EEG) to monitor the 

neurophysiological impacts of problematic gaming. 

Neurophysiological studies on problematic gaming in 

Internet Gaming Disorder (IGD) and Internet Addiction 

Disorder (IAD) provide insights into the neurocognitive 

mechanisms underlying the risks faced by problematic 

players. The use of Electroencephalogram (EEG) has been 

widely used to investigate addictive behavior, offering the 

advantages of accessibility, low cost, and excellent temporal 

resolution [7]. One technique that can help in EEG analysis is 

Event-Related Potential (ERP). ERP provides a direct 

measurement of neural activity that occurs quickly after a 

stimulus, response, or other event. Various ERP components 

have been identified and validated as measures of sensory, 

cognitive, affective, and motor processes [8]. ERP can be used 

to understand how problematic gaming behavior affects the 

brain, especially in cognitive and affective aspects. 

To obtain more relevant and accurate information from 

ERP, a feature extraction technique is needed on EEG signals 

to identify important patterns or information in brain activity. 

However, with the large number of features that can be 

extracted from EEG signals, it is important to select a subset 

of features using an efficient method to identify the most 

informative features [9]. According to Torres et al. [10], 

feature selection plays a crucial role in improving model 

quality because it can eliminate redundant or irrelevant 

features, reducing the risk of overfitting and preventing 

predictions based on noise. This approach contributes to 

higher classification accuracy by focusing the data on the most 

relevant features. 

Metaheuristic algorithms have been applied in several 

studies to aid in the feature selection process. For example, 

Samrudhi et al. [11] used the Harmony Search algorithm for 

feature selection in EEG signals for Motor Imagery 

classification, achieving an accuracy of 92.49% with KNN. 

Zina et al. [12] applied Particle Swarm Optimization (PSO) 

for optimizing EEG feature selection in emotion recognition, 

achieving an accuracy of 86.63% using an SVM model. 

Oluwagbenga et al. [13] compared several metaheuristic 

algorithms, including Ant Colony Optimization (ACO), 

Genetic Algorithm (GA), Cuckoo Search Algorithm (CSA), 

and Modified PSO (M-PSO) for feature selection, concluding 

that M-PSO achieved the best performance with an accuracy 

of 88% and faster convergence (under 50 iterations). Thirumal 

et al. [14] employed the hybrid Greedy River Formation 

Dynamics (RFD) method for feature selection in autism 

spectrum classification, achieving an accuracy of 97.15%. 

Metaheuristic algorithms have proven highly effective, yet 

they bring practical challenges, particularly when selecting the 

most efficient algorithm for finding optimal features and 

adjusting parameters [15]. To address these issues, this study 

proposes a metaheuristic-based feature selection method 

specifically designed to enhance classification accuracy in 

EEG data for problematic gamers. By employing a hybrid 

approach, the method aims to overcome the difficulties 

commonly associated with parameter tuning, enabling the 

selection of the most informative subset of features and 

strengthening the reliability of predictions related to 

problematic gaming. 

This study focuses on investigating the neurophysiological 

impacts of problematic gaming behavior in Indonesia, where 

online gaming participation has significantly increased. By 

utilizing Electroencephalogram (EEG) and Event-Related 

Potential (ERP) analysis, the research seeks to gain insight into 

how excessive gaming affects cognitive and emotional brain 

functions. Additionally, this work aims to develop effective 

feature extraction and selection techniques to improve 

predictive accuracy for problematic gaming behavior. 

Identifying the most relevant features in EEG signals will help 

lay the groundwork for future interventions and preventive 

strategies to address the risks associated with gaming 

addiction. 

II.  MATERIALS AND METHOD 

This study utilizes the Go/No-Go Association Task (GNAT) 

in combination with the recording of 16-channel 

Electroencephalogram (EEG) signals, which was selected as 

the data collection method to observe the neural responses of 

individuals identified as problematic online gamers in 

response to various stimulus themes. The GNAT requires 

participants to respond as quickly and accurately as possible, 

which provides a controlled setting to measure the cognitive 

and emotional responses of participants. During this task, EEG 

signals were recorded to capture brain activity while 

participants engaged in the test, allowing for the analysis of 

neural processes associated with decision-making, 

impulsivity, and attention. 

Data collection followed strict ethical guidelines 

established for research involving human subjects to ensure 

the protection and rights of the participants. Prior to the 

commencement of data collection, ethical approval was 

obtained from the relevant ethical committee, with consent 

given by participants based on the ethical approval document 

number 148/2024 Etik/KPIN issued by the Scientific 
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Psychology Consortium of Nusantara, Indonesia. This 

ensured that the study adhered to the necessary ethical 

standards, including obtaining informed consent from all 

participants, maintaining confidentiality, and ensuring that 

participant’s well-being was safeguarded throughout the 

research process. 

A. PARTICIPANT SELECTION 

This study focuses on EEG data collection from young adult 

respondents aged 18-25 years who are active in playing 

competitive online games such as Valorant®, Mobile 

Legends®, PUBG®, and others. The selection of respondent 

criteria is based on recommendations from psychologists 

according to relevant literature. The chosen criteria include 

consistent participation in online gaming for the past 12 

months, daily involvement in online gaming sessions, and 

gaming duration between 4 to 10 hours per day [16].  

The respondent selection process began with filling out a 

questionnaire and participating in an interview conducted by 

psychologists. These assessments were designed to evaluate 

whether the respondents met the predefined criteria and to 

classify them into either the non-problematic gamer or 

problematic gamer group. Based on the evaluation results, a 

total of 19 respondents were selected for EEG data collection, 

consisting of 10 problematic gamers (denoted as “PR”) and 9 

non-problematic gamers (denoted as “N”). 

B. GO/NO GO ASSOCIATION TASK (GNAT) 

The instrument employed for measurement was the GNAT 

(Go/No Go Association Task), specifically designed to 

evaluate implicit association variables. This computer-based 

assessment tool employed a software to produce stimuli 

aligned with the study's aims. The GNAT is a cognitive 

assessment employed in psychology and neuroscience to 

evaluate response inhibition. Participants must press a button 

in response to a designated stimulus (Go signal) and abstain 

from responding to an alternative stimulus (NoGo signal). In 

the GNAT procedure, the instrument introduces two 

categories of stimuli: targets and distractors [17],[18].  

 

 
FIGURE 1. Displays the stimulus view on GNAT, 

GNAT is designed as shown in FIGURE 1 where the 

stimulus word is displayed in white in the center of the screen 

against a black background. Each session on GNAT contains 

60 stimulus words, divided into two categories: target words 

and non-target words. Each word is displayed for one second 

[18]. Target words represent stimuli that reflect the theme or 

category associated with the session’s theme, while non-target 

words do not correspond to the theme. The order of target and 

non-target words in each session is randomized, so each 

respondent receives a different sequence. During the Go/No-

Go Association Task (GNAT), participants must hit the 

spacebar to indicate "Go" when a target word is presented and 

refrain from pushing any key to signify "No Go" when a 

distractor word is displayed [19]. Participants were required to 

complete five tasks, consisting of one practice session and four 

main sessions. During the practice session, participants were 

introduced to the overarching GNAT procedure, which 

involved the presentation of stimuli and instructions for 

responding to relevant stimuli. In the main sessions, four target 

words were used by respondents in their responses. The focus 

of session one was Academic, session two was Game, session 

three was Work, and the final session pertained to 

Relationships. These four sessions were chosen based on a 

focus group discussion conducted by the Tel-U Research 

Team and psychologists to determine appropriate stimuli for 

observing the impact of online gaming on players. During this 

session, members of Tel-U Esports, an online gaming student 

organization at Telkom University, were also invited to 

discuss and help determine the stimuli, covering both in-game 

and out-of-game activities. As a result, the discussion 

identified four themes considered suitable as stimuli: 

Academic, Game, Work, and Relationships. 

These themes were selected based on insights and 

conclusions from psychologists, as they represent the aspects 

most affected by problematic gaming behavior. For the 

Academic and Work themes, individuals exhibiting 

problematic gaming tendencies often neglect these 

responsibilities and show slower responses when confronted 

with related stimuli. Conversely, when presented with stimuli 

related to the Game theme, problematic gamers tend to display 

heightened sensitivity and quicker responses, consistent with 

their excessive engagement in gaming activities. Lastly, the 

Relationships theme was included because psychologists 

observed that problematic gamers are often more sensitive to 

interpersonal relationships, reflecting the social challenges 

associated with their behavior. These four themes were 

subsequently used in four separate sessions for data collection 

to comprehensively assess the behavioral impact of online 

gaming. 

During the GNAT process, psychologists monitored the 

participant’s behavior and bodily movements. In GNAT, the 

potency of an association is assessed by examining the 

proximity of objects, such as words, to the target category. 
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FIGURE 2. Illustration of room arrangement and EEG recording conditions [20],

Furthermore, stimuli that are not directly associated with the 

target words may function as distractors unrelated to the target 

words. One condition entails the concurrent detection of 

stimuli denoting the target category and distractors [18], [19]. 

B. RECORDING SETUP 

Data recording was performed at the Smart Data Sensing 

Laboratory of Telkom University, Bandung. The EEG 

recording device used in this study was the Contect KT-88, 

which is 16 electrodes placed according to the 10-20 standard 

with sampling frequency of 100 Hz. Data collection consisted 

of three stages: initial interviews, GNAT task performance 

and EEG signal recording, and final interviews. 

In the initial interview, respondents filled out written 

consent forms containing details about the research objectives, 

potential risks, and benefits. This interview was conducted by 

psychologists to verify the respondent's personal data. 

Additionally, the interview included questions about the 

online games the respondents played, as well as their gaming 

duration. Respondents were also allowed to inspect the room 

where data collection would take place and were given an 

explanation about the technical aspects of the data collection 

process. 

After the interview, respondents were guided to the data 

collection room. In this room, the respondents were fitted with 

an electrode cap for EEG signal recording during the GNAT 

task, as illustrated in FIGURE 2. The layout of the devices in 

the illustration is based on an experiment by Wijayanto et al. 

[20]. The setup was designed to ensure that participants were 

comfortable throughout the recording process. The monitor 

screen, used as the test medium, was positioned 67 cm from 

the participant. This distance was chosen because it aligns 

with the recommended comfortable working distance for 

monitor screens, which is between 45 and 75 cm according to 

the American Optometric Association [20],[21]. The room 

lighting was deliberately dimmed to help participants 

concentrate on the GNAT task without interference from 

excessive brightness. Environments with high illuminance and 

elevated correlated color temperatures (CCT) can be overly 

intense, disrupting normal attention processing [23], [24], 

[25]. This may impair concentration, make individuals more 

prone to distractions during sustained attention tasks, and 

ultimately reduce task efficiency [26].There should be no 

distractions, such as noise or light, which could affect the EEG 

signal recording results. Any distractions can influence the 

quality of the EEG signal recording. 

In this data collection phase, in addition to EEG signal data, 

the respondent's GNAT task performance and two additional 

videos were recorded. The first video recorded the 

respondent’s face, while the second video focused on the 

keyboard. The video recordings included a shot of the 

participant’s face on the right side and the GNAT screen on 

the left side, as shown in FIGURE 3. Timestamps in the format 

hh:mm,ms (e.g., 00:03:00:73) were included to assist 

psychologists in analyzing non-verbal responses and the 

responses provided during the GNAT task when the 

respondent pressed the spacebar. 

 

 
FIGURE 3. Video recording results during data collection. 

Once the data collection was completed, the respondents 

were directed back to psychologists for the final interview. 
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This interview included questions regarding the respondent’s 

experiences during the GNAT task. The results of the initial 

and final interviews were used by psychologists as additional 

observations for each respondent. 

C. EEG DATASET 

In this study, we introduced another dataset of the TelUnisba 

Neuropsychology EEG Dataset (TUNDA), known as 

TUNDA 2.0. This dataset focuses on the EEG signal results 

from problematic respondents. However, not all respondents 

can be used based on validation results from psychologists, so 

only the following respondents are included in this dataset: PR 

02, PR 04, PR 06, PR 07, and PR 09. The dataset contains five 

EEG signals with 16 channels based on the montage in Figure 

2 from the first and second sessions of the GNAT task 

performed by problematic gamer respondents. The signals 

have not undergone signal processing, meaning they still 

contain noise, such as random fluctuations, as shown in 

FIGURE 4. Because of this, the EEG data must undergo 

preprocessing steps, such as filtering, artifact rejection to 

remove eye artifacts, and segmentation to isolate the EEG 

signal for each word stimulus. 

 

 
FIGURE 4. EEG signal recording results. 

D. INDEPENDENT COMPONENT ANALYSIS (ICA) 

Independent Component Analysis (ICA) is a prevalent 

technique in signal processing employed to identify and 

remove noise elements, such as body movements and eye 

blinks, that may remain in electroencephalogram (EEG) 

signals despite filtering [24], [25]. Considering that the data 

collection technique requires responders to maintain 

continuous attention on a computer screen without 

interruptions, the acquired EEG signals are likely to exhibit 

ocular artifacts. The artifacts, such as voltage distortions from 

eye rotation, muscle contractions, and blinking, can disrupt 

analysis due to their amplitude being considerably greater than 

the neural signals associated with specific events and are 

frequently correlated with the conditions of data collection. 

This study exclusively eliminates components associated with 

ocular artifacts, including eye blinks and eye movements. 

Consequently, eliminating visual artifacts is crucial to avert 

data misunderstanding. In ICA, the activity of each signal 

channel is sampled and evaluated randomly [26], [27]. 

ICA employs a statistical approach to transform an 

observed multidimensional random vector into components 

that are as statistically independent from one another as 

possible. The mathematical formulation of ICA involves 

several key steps and can be expressed using Eq. (1), while the 

signal source matrix S is represented by Eq. (2) [26]. In these 

equations 𝑎, 𝑏, 𝑐, and 𝑑 refer to the mixing coefficients. The 

objective of ICA is to estimate both 𝐴 and 𝑆 based on the 

observed data 𝑋, ensuring that the components in S are as 

statistically independent from one another as possible[26]. 

𝑋 = (
𝑋1
𝑋2
) = (

𝑎𝑠1 + 𝑏𝑠2
𝑐𝑠1 + 𝑑𝑠2

) = (
𝑎 𝑏
𝑐 𝑑

) (
𝑠1
𝑠2
) = 𝐴𝑠  (1) 

𝑆 = (
𝑠1
𝑠2
) = (

(𝑠11, 𝑠12, … , 𝑠1𝑁)
(𝑠21, 𝑠22, … , 𝑠2𝑁)

)   (2) 

E. BUTTERWORTH BANDPASS FILTERING 

The raw EEG signals had substantial noise, including 

components from muscle activation, power line interference, 

and eye movement. A Butterworth bandpass filter was 

employed on the EEG signals to attenuate undesirable 

frequency components and eliminate noise. A fourth-order 

Butterworth filter is employed. A fourth-order Butterworth 

filter was selected due to its superior linear response relative 

to alternative filters. The utilized cutoff frequencies are below 

1 Hz and above 40 Hz. Frequencies below 1 Hz were excluded 

due to their classification as low-frequency noise, including 

baseline drift or gradual signal shifts, while frequencies 

beyond 40 Hz were discarded to mitigate sinusoidal 

interference commonly observed at elevated frequencies [28], 

[29]. The general transfer function 𝐻(𝑠) of a Butterworth filter 

is expressed in Eq. (3) [30], where 𝜔𝑐 represents the cutoff 

frequency, 𝑛 denotes the order of the filter. 

𝐻(𝑠) =
1

√1+(
𝑠

𝜔𝑐
)
2𝑛

   (3) 

For a bandpass Butterworth filter, the transfer function 

combines both lowpass and highpass characteristics. The 

transfer function for a bandpass Butterworth filter is given by 

Eq. (4) [30], where 𝜔𝐿 is the lower cutoff frequency, and 𝜔𝐻is 

the upper cutoff frequency. These frequencies must be 

converted from Hz to radians per second using Eq. (5) and Eq. 

(6) [30]. 

𝐻(𝑠) =
(
𝑠

𝜔𝐿
)
𝑛

(
𝑠

𝜔𝐻
)
𝑛

(1+(
𝑠

𝜔𝐿
)
2𝑛

)(1+(
𝑠

𝜔𝐻
)
2𝑛

)

  (4) 

𝜔𝐿 = 2𝜋 × 𝑙𝑜𝑤𝑐𝑢𝑡  (5) 

𝜔𝐻 = 2𝜋 × ℎ𝑖𝑔ℎ𝑐𝑢𝑡  (6) 

E. ERP CLASS LABELING 

Event-Related Potential is a direct measurement of brain 

activity used to understand various cognitive, affective, 

sensory, and motor processes. ERP reflects shifts in EEG 
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signal waves that represent the brain's response to a particular 

stimulus [34], [35]. The early waves in ERP, which typically 

occur within 100ms after the stimulus begins, are associated 

with unconscious sensory processing of the given stimulus. 

The subsequent stage in the ERP signal, which occurs after 

200ms, is related to controlled attention, memory access, and 

integrative processing of the stimulus [35]. P300 is one of the 

components of ERP that appears as a response to active 

involvement in detecting target stimuli relevant to a task [35]. 

The ERP P300 can be detected by identifying the time point 

that contains the maximum value within the 200-500 ms range 

after the stimulus, as illustrated in FIGURE 5 [36]. 

The ERP determination process is not performed for the 

entire session but only for Session 1 with the academic 

stimulus and Session 2 with the game stimulus. After the EEG 

signals have undergone decomposition and filtering, the next 

step is ERP determination, by labeling them as "ERP" and "No 

ERP." Before the signal is labeled, the signal is segmented 

based on the time range from when the stimulus appears until 

the respondent provides a response. This segmentation is 

applied only to the target words that were answered correctly 

by the respondents, so not all stimuli are processed in the ERP 

search. 

Since the ERP component to be analyzed is P300, the 

segmented data then searches for the highest peak within the 

200–500 ms time range. If the EEG signal duration is less than 

200 ms, the data will not be further processed in the ERP 

search, as it does not meet the required time range for P300 

component detection. If the signal duration is greater than 200 

ms but less than 500 ms, linear interpolation for upsampling is 

applied to the signal. 

 
FIGURE 5. Illustration of ERP P300 detection. 

 
TABLE 1 

Amount of data per respondent 

Respondent 
Amount of Data 

ERP No ERP 

PR 02 109 251 

PR 04 74 256 

PR 06 61 257 

PR 07 211 113 

PR 09 184 140 

ERP observation is usually performed at three midline 

electrode locations: frontal, central, and parietal [35]. 

However, since the electrodes used during data collection do 

not cover the midline locations, ERP observation is 

represented by electrodes on the right and left sides: F3, F4, 

C3, C4, P3, and P4. ERP labeling is performed separately for 

each of these six channels to ensure that the ERP response can 

be detected specifically in each of these channels. 

ERP determination is based on the highest amplitude within 

the 200–500 ms range with a voltage between 6.5–20 µV [35], 

[37]. If a peak within this range has an amplitude between 6.5 

– 20 µV, the signal is labeled “ERP.” If no peak is detected 

within this range, the signal is labeled "No ERP."  TABLE 1 

shows the amount of data for each respondent in the "ERP" 

and "No ERP" classes. 

F. FEATURE EXTRACTION AND FEATURE SELECTION 

The important information from the EEG signal after the pre-

processing stage will be represented as features. A statistical 

approach is one of the simplest and commonly used methods 

in feature extraction because it can provide basic information 

from the data. However, this approach alone is not sufficient 

to explore all the information contained within the EEG signal 

[26]. Therefore, in addition to using statistical features (Mean, 

Standard Deviation, Skewness, Kurtosis, Min, Median, Peak 

Latency, Variance), this study also uses additional features 

such as power and Hjorth Parameters (Hjorth Mobility and 

Hjorth Complexity), adapted from the studies of Bablani et al. 

[38], Nawaz et al. [39], Qaisar et al. [40], and Ahmad et al 

[41].  

In building a machine learning model, the input information 

must accurately reflect brain activity, which requires selecting 

the most relevant and optimal feature subset. Therefore, an 

additional step is needed to obtain this subset, known as 

feature selection. Feature selection can eliminate irrelevant 

variables, reduce computational complexity, decrease 

overfitting, and prevent the model's generalization capacity 

from being compromised [35]. In this study, the hybrid 

approach combines baseline metaheuristic algorithms 

specifically the Genetic Algorithm (GA), Ant Colony 

Optimization (ACO), and Particle Swarm Optimization 

(PSO)—with Binary Stochastic Fractal Search (B-SFS) to 

enhance the feature selection process. The primary objective 

is to leverage the strengths of these algorithms to explore and 

exploit the solution space, while using B-SFS to refine the 

solutions through a diffusion process illustrated in FIGURE 6. 

To begin with, the baseline metaheuristic algorithms (GA, 

ACO, or PSO) perform the initial exploration and exploitation 

phases. During the exploration phase, the algorithms search 

through the feature space to identify potentially optimal 

feature subsets, while during the exploitation phase, they focus 

on fine-tuning these subsets to improve their performance. 

Once this is done, B-SFS is integrated into the process to 

further optimize the feature selection. The B-SFS method 

works by simulating a diffusion process that helps in 

navigating the feature space more effectively, allowing for the 
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discovery of better feature subsets that might not have been 

reached using the baseline algorithms alone. 

The hybridization framework essentially combines the 

robust search capabilities of the baseline algorithms with the 

refinement power of B-SFS, leading to more efficient and 

effective feature selection. This hybrid approach aims to 

enhance the overall performance of the feature selection 

process by ensuring that both exploration and exploitation are 

balanced and that the solutions are further optimized in a 

manner that is not possible using any single method alone. 

The evaluation of the hybrid approach is conducted through 

the calculation of fitness, a key metric used to assess the 

quality of the selected features. Fitness functions help 

determine how well a particular feature subset contributes to 

the overall performance of the model, ensuring that the chosen 

features are both relevant and effective for the task at hand. By 

using fitness calculations, the study ensures that the hybrid 

method provides measurable improvements in the feature 

selection process, ultimately leading to better model 

performance. 

 
FIGURE 6. Flowchart of Hybridization Metaheuristic Algorithm 

G. BINARY STOCHASTIC FRACTAL SEARCH 

The Binary Stochastic Fractal Search (B-SFS) algorithm is a 

metaheuristic approach that is used in this study as a hybrid 

method to address challenges in feature selection. This 

algorithm leverages Binary Search to handle the search space 

issue in feature selection by converting continuous values into 

binary form, enabling more effective feature selection. By 

combining this binary search mechanism with Stochastic 

Fractal Search (SFS), B-SFS enhances the ability to explore 

and exploit the solution space efficiently. 

In B-SFS, the diffusion process from SFS plays a key role 

in performing the exploitation task, guiding the algorithm 

towards promising solutions. Meanwhile, the update process 

is responsible for exploration, allowing the algorithm to search 

for optimal solutions across a broader solution space. This 

combination ensures that the B-SFS algorithm can avoid local 

optima and select the most relevant features for classification 

tasks, improving the overall accuracy of the model [36]. 

ALGORITHM 1 is the B-SFS pseudocode used this study 

based on [44], [45] with adjustments to meet the requirements 

of the study. 

 
ALGORITHM 1 Proposed B-SFS for Hybrid method in Feature Selection 

Input: Set of initial solutions S, Data X, Labels y, Maximum iteration 

(max_iteration), Threshold (threshold) 

 Output: Best solution (best_solution), Best fitness score (best_fitness) 

 best_solution ← None 
 best_fitness ← 0 

 for iteration ← 1 to max_iteration do 

new_solutions ← empty list 

 for each solution in S do 

new_solution ← solution 
flip_index ← random integer between 0 and length of solution 

new_solution[flip_index] ← 1 – new_solution[flip_index] 

Flip the bit at flip_index 

 fitness ← fitness_function(new_solution, X, y, threshold) 

 if fitness > best_fitness then 
 best_fitness ← fitness 

 best_solution ← new_solution 

 end if 

 append new_solution to new_solutions 
 end for 

 S ←new_solutions 

 end for 

 return best_solution, best_score 

III.  RESULT 

The recorded data split into two categories “ERP” and “NO 

ERP.” In the "ERP" category contains EEG data that has a 

peak amplitude between 6.5 – 20 µV in the time range 200-

500 ms. While the "NO ERP" category contains data that does 

not show a peak in that range. 

A. NOISE COMPONENT REMOVAL 

In this dataset, ICA was implemented using the EEGLAB 

toolbox in MATLAB. The ICA function in EEGLAB can 

decompose the EEG signals on each channel and assess their 

quality. This process helps determine whether the signal 

contains components from brain activity or artifacts. In 

channels where the signal includes ocular components, 

indicated by the "Eye" label, those components are removed 

to ensure only brain activity-related signals remain. In the 

signal processed with ICA, the numerous spikes seen in the 

raw signal in Figure 3 will be removed, resulting in a cleaner 

signal, as shown in Figure 7. Figure 7 shows the EEG signal 

plot after the ocular artifact components have been removed. 

B. FILTERING USING BUTTERWORTH 

Although ICA has been applied to remove ocular artifacts 

typically present at a frequency of 40 Hz [37], additional 

filtering is still needed to further enhance the quality of the 

EEG signal obtained. In FIGURE 7, even after ocular artifacts 

have been removed, low-frequency noise remains, as well as 
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sinusoidal signals. To address this noise, a 4th-order 

Butterworth filter with a cutoff frequency range of 1–40 Hz is 

used. FIGURE 8 shows the EEG signal after the filtering 

process, in which the sinusoidal noise has been successfully 

removed. 

 

 
FIGURE 7. EEG Signal Plot Results After Decomposition Using ICA. 

 

 
FIGURE 8. EEG signal plot results after filtering 

C. TESTING SCENARIOS 

Statistical analysis of p-values across all respondents in 

TABLE 2 reveals that certain features consistently have p-

values below 0.05, indicating their significant contribution to 

class differentiation. Conversely, some features tend to have 

p-values above 0.05, suggesting they may introduce noise, 

which can negatively impact the model’s performance. 

Therefore, feature selection is necessary to eliminate irrelevant 

or minimally contributing features. By reducing the number of 

insignificant features, the model can operate more efficiently 

and produce more accurate predictions [47]. However, the 

choice of feature selection method should be carefully 

considered. Although a feature may have a low p-value, 

indicating statistical significance, it does not necessarily mean 

it is crucial for prediction. Thus, a more comprehensive feature 

selection approach is needed to ensure an accurate and 

efficient model [48]. 

The classification of ERP on problematic gamers was done 

in three scenario. The first scenario involves testing the dataset 

without feature selection, using all 12 features as input data 

without any selection process for classifying "ERP Present" 

and "ERP Not Present." The second scenario involves testing 

the dataset with a metaheuristic algorithm for feature 

selection. In this scenario, the feature subset selected by the 

basic metaheuristic algorithm will serve as input for 

classification. The final scenario involves testing the 

implementation of a hybrid approach with the best 

metaheuristic algorithm from the second scenario, combined 

with B-SFS for feature selection prior to classification. The 

classification of "ERP" and "NO ERP" classes using this 

feature subset will be evaluated based on Accuracy, 

Specificity, and Sensitivity, using logistic regression and a 

voting classifier. Classification of ERP and non-ERP states is 

performed intra-subject, meaning that for each classification, 

only data from a single respondent is used. This approach is 

chosen because each individual exhibits different EEG signal 

patterns even when given the same stimulus [38], [39]. 

 
TABLE 2 

p-value of each respondent's features 
 PR 02 PR 04 PR 06 PR 07 PR 09 

Mean 0.000** 0.001* 0.001* 0.000** 0.000** 

Standard 

Deviation 
0.000** 0.000** 0.000** 0.288 0.001* 

Skewness 0.054 0.138 0.138 0.000** 0.001* 

Kurtosis 0.135 0.766 0.766 0.691 0.676 

Min 0.001* 0.073 0.073 0.589 0.773 

Median 0.000** 0.073 0.073 0.000** 0.001* 

Peak 

Latency 
0.001* 0.459 0.459 0.222 0.478 

Variance 0.001* 0.000** 0.000** 0.320 0.001* 

Max Peak 0.000** 0.000** 0.000** 0.001* 0.000** 

Power 0.001* 0.000** 0.000** 0.412 0.088 

Hjorth 

Mobility 
0.379 0.001* 0.001* 0.716 0.053 

Hjorth 

Complexity 
0.001* 0.228 0.000** 0.585 0.052 

Note: 

* Significance at P < 0.05 

** Significance at P < 0.001 

Based on the classification results across all subjects in 

TABLE 3 and TABLE 4, it can be concluded that both the 

Logistic Regression and Voting Classifier models generally 

achieved very high accuracy in classifying the data. However, 

not all models for each respondent achieved perfect 

performance, likely due to the presence of features that 

provide limited or irrelevant information. By removing 

irrelevant or minimally contributing features, the model can 

work more efficiently and produce more accurate predictions 

[40]. This can be achieved through feature selection. However, 

the choice of feature selection method should also be carefully 

considered, as traditional feature selection or manual feature 

removal based on feature values may result in less accurate 

and efficient predictive models [41]. 

Metaheuristic algorithms have emerged as a new standard 

in feature selection due to their ability to identify the best 

feature subset while consistently maintaining model accuracy 

[41]. These algorithms can identify optimal feature subsets 
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from all possible combinations by evaluating each potential 

solution through a series of operations on the best solution 

[42]. In the second scenario, after the EEG signals undergo 

feature extraction, all features will go through a feature 

selection process using three metaheuristic algorithms: GA, 

PSO, and ACO. Each of these algorithms will generate a 

feature subset based on their respective search processes, as 

shown in TABLE 6. In the testing of this scenario, the use of 

metaheuristic algorithms successfully reduced the number of 

features used for classifying the "ERP Present" and "ERP Not 

Present" classes. This testing also resulted in improved 

classification performance for some respondents as shown in 

FIGURE 9 and FIGURE 10, demonstrating that the use of 

metaheuristic algorithms aligns with its goal of maximizing 

accuracy with minimal error [43]. The selection of feature 

subset combinations had an impact on the model's 

performance in classification, resulting in either an increase or 

decrease in performance. Almost all respondents saw an 

improvement in performance after using metaheuristics for 

feature selection, except for PR 07 and PR 09, which 

experienced a decrease in performance with the Voting 

Classifier. This suggests the need for a deeper search to find a 

more optimal combination of feature subsets. One approach to 

achieving this is by implementing algorithm hybridization, 

which combines two metaheuristics with a focus on more 

efficient and effective exploration and exploitation, to 

optimize the solution or feature subset and enhance the quality 

of the candidate solutions [43]. 

The testing of scenario three involves applying algorithm 

hybridization with the goal of finding a more optimal feature 

subset than the standard metaheuristic algorithms used in 

scenario two. The hybridization will be carried out by 

combining two metaheuristic algorithms: the best-performing 

metaheuristic algorithm for each respondent with the B-SFS 

algorithm. The best algorithm for each respondent will be 

selected based on the highest classification performance from 

the generated subset. In addition to performance, the algorithm 

that produces a smaller number of feature subsets will also be 

considered when selecting the best algorithm. 
TABLE 3 

Logistic Regression performance in scenario 1 
 Accuracy Sensitivity Specificity 

PR 02 0.98 1.00 0.95 

PR 04 0.93 0.93 0.94 

PR 06 1.00 1.00 1.00 

PR 07 0.98 0.96 1.00 

PR 09 0.98 1.00 0.96 
TABLE 4 

Voting Classifier performance in scenario 1 
 Accuracy Sensitivity Specificity 

PR 02 0.98 0.98 1.00 

PR 04 0.98 0.98 1.00 

PR 06 1.00 1.00 1.00 

PR 07 0.98 0.96 1.00 

PR 09 1.00 1.00 1.00 

 

 
FIGURE 1. Logistic Regression performance using three metaheuristic 
algorithms in scenario 2 

 
FIGURE 10. Voting Classifier performance using three metaheuristic 
algorithms in scenario 2 

TABLE 5 
Logistic Regression performance in scenario 3 

 Accuracy Sensitivity Specificity 

PR 02 1.00 1.00 1.00 

PR 04 1.00 1.00 1.00 

PR 06 1.00 1.00 1.00 

PR 07 1.00 1.00 1.00 

PR 09 1.00 1.00 1.00 

TABLE 6 
The results of the feature subsets selected by each metaheuristic algorithm in scenario 2 

 PR 02 PR 04 PR 06 PR 07 PR 09 

GA PSO ACO GA PSO ACO GA PSO ACO GA PSO ACO GA PSO ACO 

Mean                

Standard 

Deviation 
               

Skewness                

Kurtosis                
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Min                

Median                

Peak 

Latency 
               

Variance                

Max Peak                

Power                

Hjorth 

Mobility 
               

Hjorth 

Complexity 
               

Fitness 

Value 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TABLE 7 
Results of the subset of features selected by the hybrid metaheuristic and its comparison in scenario 3 against the conventional metaheuristic in 

scenario 2 
 PR 02 PR 04 PR 06 PR 07 PR 09 

ACO 

B-SFS 
ACO 

ACO 

B-SFS 
ACO 

GA 

B-SFS 
GA 

ACO 

B-SFS 
ACO 

ACO 

B-SFS 
ACO 

Mean           

Standard 

Deviation 
          

Skewness           

Kurtosis           

Min           

Median           

Peak 

Latency 
          

Variance           

Max Peak           

Power           

Hjorth 

Mobility 
          

Hjorth 

Complexity 
          

Fitness 

Value 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

TABLE 8 
Voting Classifier performance in scenario 3 

 Accuracy Sensitivity Specificity 

PR 02 1.00 1.00 1.00 

PR 04 1.00 1.00 1.00 

PR 06 1.00 1.00 1.00 

PR 07 1.00 1.00 1.00 

PR 09 1.00 1.00 1.00 

 
Based on TABLE 5 dan TABLE 8, the hybridization of the 

best algorithm from scenario two with B-SFS successfully 

demonstrated its ability to select optimal features and achieve 

perfect classification performance for all respondents. 

Implementing hybridization for feature selection in this 

scenario does not necessarily guarantee a reduction in the 

number of features; instead, it may result in an increase. 

Nonetheless, this hybridization still produces feature subsets  

with a minimal yet informative number of features. In this 

scenario, nearly all respondents experienced an increase in the 

number of features in their hybridized algorithm subset, except 

for respondent PR 06, who had one feature reduced in their 

subset as shown in TABLE 7. 
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V. DISCUSSION 

The results reveal that Max Peak is a standout feature for each 

respondent, consistently selected by all algorithms in both 

scenario 2 and scenario 3, and it notably improves accuracy 

for most respondents. Its significant impact is evident when 

ACO, in scenario 2, selects Max Peak alone as the feature 

subset for respondents PR 02 and PR 07, achieving perfect 

classification performance. This selection is likely related to 

the ERP P300 characteristics, which can be detected by 

measuring amplitude during the largest spike at the positive 

voltage peak in the 200-500 ms range after the stimulus [22]. 

However, selecting Max Peak alone does not always 

guarantee improved performance, as seen with respondent PR 

06 using ACO in scenario 2. Nevertheless, the combination of 

Max Peak and Kurtosis in the GA-generated subset for PR 06 

in scenario 2 led to enhanced performance. The inclusion of 

Kurtosis indicates that the EEG signal from PR 06 may detect 

ERP by assessing the intensity of the tail distribution 

compared to the normal distribution tail [44]. The interaction 

of other features alongside Max Peak underscores the need for 

further exploration in searching for optimal feature subset 

combinations, prompting the use of metaheuristic 

hybridization with B-SFS. 

Despite the hybrid metaheuristic's feature subset selection 

increasing the number of features for almost all respondents, 

it still resulted in perfect classification performance for every 

respondent. This highlights the effectiveness of B-SFS in the 

diffusion process, where the application of Gaussian 

distribution allows for an optimal solution search. This enables 

particles to move randomly around the best solution, thereby 

increasing the likelihood of finding more informative feature 

subsets [45]. 
TABLE 9 

Previous studies 

Reference Scope/Case 
Feature 

Selection 
Results 

[55] 
IGD 

Classification 
- 

Accuracy:86.5%, 

Sensitivity: 89.3% 

Specificity: 83.3%. 

[56] 
IGD 

Classification 

Filter 

Approach 

Accuracy ranged 

from 63.5% to 73.1% 

[57] 
IGD 

Classification 
- 

Accuracy of 

Discriminant 

Analysis: 73%, 

SVM: 75%, 

Neural Network: 0.84 

[58] 

Classification 

of addiction 

levels in 

gaming 

- Accuracy: 63.3% 

 

Based on TABLE 9, it can be observed that the 

classification model performance achieved in this study is 

superior to the results of previous studies that also focused on 

problematic gamers. This improvement can be attributed to 

the use of feature selection through metaheuristic and hybrid 

metaheuristic approaches. By leveraging algorithms such as 

Genetic Algorithm, Ant Colony Optimization, and Particle 

Swarm Optimization, combined with Binary Stochastic 

Fractal Search (B-SFS), the model is able to identify and select 

the most relevant and informative features. This approach 

reduces complexity and enhances accuracy, making feature 

selection through metaheuristics a crucial factor in improving 

the overall performance of the model in this study. 

Despite the promising results, several limitations should be 

acknowledged. Validation of the hybrid metaheuristic's 

effectiveness has primarily been based on classification 

performance alone, without analyzing the importance values 

of each feature. As a result, this study does not fully explain 

the rationale behind how the hybrid metaheuristic selects its 

feature subsets. Future research could benefit from providing 

a more detailed explanation of the hybrid algorithm's 

operation, focusing on the features it selects and their 

significance.  

Another limitation is that the study focuses solely on the 

group of problematic online gamers, without comparing the 

EEG signals to a control group. For example, it would be 

valuable to investigate whether problematic gamers exhibit 

more ERP responses when exposed to game stimuli compared 

to non-problematic gamers. Including such comparisons could 

provide deeper insights into how gaming behavior affects 

neural responses and help strengthen the findings by 

contrasting the two groups. 

VI. CONCLUSION 

This study successfully demonstrated the integration of EEG 

and ERP techniques combined with the GNAT to observe the 

neurophysiological responses of problematic online gamers to 

various stimulus themes. The hybrid approach involving 

metaheuristic algorithms (GA, ACO, PSO) and Binary 

Stochastic Fractal Search (B-SFS) achieved optimal 

performance in feature selection, with an accuracy, sensitivity, 

and specificity of 1.00 across all participants. The use of B-

SFS significantly enhanced the identification of the most 

informative features related to problematic gaming behavior, 

emphasizing its effectiveness in EEG-based analysis. The 

findings suggest that advanced feature selection methods, such 

as B-SFS, could be applied in future research to monitor and 

intervene in problematic gaming behaviors. By improving the 

reliability of predictions based on neurophysiological 

indicators, these methods hold potential for developing 

intervention strategies and preventive measures for gaming 

addiction. 

Future research could benefit from further exploration of 

the hybrid metaheuristic algorithm, with a detailed analysis of 

the selected features and their significance. Additionally, 

including control group comparisons would be valuable to 

investigate how problematic gamer’s ERP responses differ 

from those of non-problematic gamers when exposed to 

gaming stimuli. These comparisons could offer deeper 

insights into the neural impacts of gaming behavior and 

strengthen the findings. Furthermore, adding an ERP analysis 

related to impulsivity and responsiveness would be beneficial, 

as these components reflect an individual's tendency to 
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respond and provide insights into the quality of their 

responses. Expanding the scope of these studies will 

contribute to a better understanding of how excessive gaming 

affects brain function and may pave the way for more effective 

interventions for gaming addiction. 
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