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ABSTRACT Sleep apnea is an important disorder that involves frequent disruptions in breathing during sleep, which can 
result in numerous serious health issues, such as cognitive deterioration, cardiovascular illness, and heightened mortality risk. 
This study introduces a detailed model designed for the detection of sleep apnea using single-lead electrocardiogram signals, 
providing an accurate detection method. We can use single-lead ECG signals to get ECG-Derived Respiration (EDR). EDR 
combines important respiratory signals with RR intervals to help find sleep apnea more accurately. We structure the research 
process into seven systematic stages, ensuring a comprehensive approach to the issue. The process commences with the 
acquisition of data from the "Apnea-ECG Database" accessible on the PhysioNet platform, which underpins the ensuing 
analysis. Subsequent to data collection, we execute a sequence of preprocessing procedures, including segmentation, filtering, 
and R-peak detection, to enhance the ECG data for analysis. After that, we do feature extraction, which gives us 12 unique 
features from the RR interval and 6 features from the R-peak amplitude, which are both necessary for the model to work. The 
research subsequently utilizes feature engineering, implementing a Time Window methodology to encapsulate the temporal 
dynamics of the data. To ensure the results are robust, we conduct model evaluation using stratified K-fold cross-validation 
with five folds. The modeling technique employs a 1D Convolutional Neural Network (1D-CNN) utilizing the Adam optimizer. 
Ultimately, the performance assessment shows an accuracy score reaching 89.87%, sensitivity at 86.16%, specificity at 92.30%, 
and an AUC score of 0.96, attained with a Time Window size of 15. This model signifies a substantial improvement in 
performance relative to previous studies and serves as a feasible option for the detection of sleep apnea. 

INDEX TERMS Electrocardiogram, One-Dimensional Convolutional Neural Network, Sleep Apnea, Stratified K-Fold Cross-
Validation, Time Window

I. INTRODUCTION 
Sleep apnea is a prevalent sleep disorder marked by repeated 
interruptions in breathing disturbances lasting over 10 seconds 
during sleep. This illness may result in numerous adverse 
impact on a person's health and quality of life [1]. If 
inadequately managed, sleep apnea may result in severe 
problems, including cognitive impairment [2], cardiovascular 
disorders [3], and potentially fatal outcomes. Approximately 
14% of males and 5% of women in the United States are 
estimated to suffer from sleep apnea, with prevalence growing 
throughout diverse groups globally [4]. Given the significant 
increase in sleep apnea cases, it is critical to identify people at 

risk and implement prompt and effective treatments for 
monitoring, managing, and treating this condition. 

Polysomnography (PSG) is a prevalent technique for 
identifying sleep apnea. This approach entails the examination 
of several biological data, including electrooculograms 
(EOG), electroencephalograms (EEG), electromyograms 
(EMG), pulse oximetry, and electrocardiograms (ECG). This 
technique necessitates the patient to spend the night in a sleep 
clinic, where an expert will affix numerous electrodes and 
cables and oversee the entire testing process [5]. These 
constraints may impede its utilization in clinical 
environments, underscoring the necessity to develop other 
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methods that are more pleasant and practical for sleep apnea 
detection. 

The utilization of an electrocardiogram (ECG) is an 
effective method for identifying sleep apnea, as it offers 
critical insights into the cardiorespiratory system [6]. The 
ECG signal extracts the ECG-Derived Respiration (EDR) 
metric, which reflects the respiratory pattern. Heart Rate 
Variability (HRV) refers to the variations in the time intervals 
between heartbeats, determined by isolating the R peaks from 
the QRS complex within the ECG signal [7]. Single-lead ECG 
recordings can be employed to extract EDR, incorporate 
respiratory signals, and assess RR intervals, which aid in the 
detection of sleep apnea [8]. As a result, single-lead ECG data 
has emerged as the primary focus in the detection of sleep 
apnea, given its efficacy and accessibility. 

In recent years, researchers have introduced many 
techniques for identifying sleep apnea utilizing single-lead 
ECG readings. The study by Rizal et al. [9] has established a 
classification algorithm for Obstructive Sleep Apnea (OSA) 
utilizing Support Vector Machine (SVM) techniques. The 
research findings demonstrate a segment accuracy of 89.5%. 
This work demonstrates effective results in sleep apnea 
identification by conventional machine learning techniques; 
nonetheless, this methodology has inherent limits in its 
operation. Conventional algorithms depend on a 
straightforward learning mechanism, wherein the model 
directly correlates processed input to output, lacking the 
capacity to comprehend intricate data patterns. This approach 
often struggles to detect non-linear relationships or 
interactions that might be hidden within the data. The advent 
of deep learning has significantly expanded possibilities with 
its far greater ability to capture complex and dynamic patterns 
that earlier machine learning methods could not handle.  

A study by Wang et al. [10] has established a method for 
detecting sleep apnea utilizing variables derived from the 
amplitudes of R-peaks and RR intervals. This study employs 
a Multilayer Perceptron (MLP) integrated with a Time 
Window (TW) that varies in size from 0 to 15. In this study, 
the integration of TW effectively encapsulates the temporal 
dynamics of the ECG signal. This model attained a segment 
accuracy score reaching 87.3%, a sensitivity score reaching 
85.1%, a specificity score reaching 88.7%, and an AUC (Area 
Under the Curve) score reaching 0.945. Nonetheless, while 
TW with an interval of 0–15 demonstrates optimal 
performance at size 5, the MLP model employed has not yet 
fully optimized the augmented number of retrieved features. 
Increased feature extraction often enhances performance; 
nevertheless, the MLP model has yet to fully assimilate the 
intricate patterns of the ECG data. This signifies a necessity 
for extensive TW testing and the implementation of more 
sophisticated models, such as One-Dimensional 
Convolutional Neural Networks (1D-CNN), which may excel 
in identifying sleep apnea and discerning intricate patterns 
from biological inputs. 

Recent advancements in deep learning have shown 
favorable outcomes in numerous classification problems, 
particularly in picture classification [11], [12], signal analysis 

[13], [14], and its applications across diverse industries. 
Convolutional Neural Networks (CNN) are a deep learning 
methodology that emulates the hierarchical architecture of 
human visual processing [15]. CNN can analyze biological 
signals and conduct biometric signal analysis [16] and 
performing biometric signal analysis through the automatic 
extraction of salient aspects [17]. The deployment of CNN 
models, including 1D Convolutional Neural Networks (1D-
CNN), may improve precision and dependability for detecting 
sleep apnea [18]. 

A study by Bahrami and Forouzanfar [19] created multiple 
models for sleep apnea detection through ECG data. This 
research employs machine learning methods, deep learning, 
and hybrid models. With an accuracy score reaching 88.13%, 
a sensitivity score reaching 84.26%, and a specificity score 
reaching 92.27%, the hybrid Model 1D-CNN ZFNet-BiLSTM 
did the best job of segmentation. To ensure result reliability, 
this research used a stratified K-fold cross-validation 
procedure with five folds, partitioning the data into numerous 
segments for model training and testing [20]. Although it 
delivers excellent results, the hybrid model is highly intricate 
due to the combination of several algorithms. 

A study by Wang et al. [21] devised a sleep apnea detection 
algorithm utilizing features derived from the amplitudes of R-
peaks and RR intervals. This study utilized a 1D-CNN based 
on the LeNet-5 architecture. It had an AUC score reaching 
0.950, a segment accuracy score reaching 87.6%, a sensitivity 
score reaching 83.1%, a specificity score reaching 90.3%, and 
a sensitivity of 83.1%. Different deep learning models have 
been shown to be good at finding sleep apnea in the past, but 
none of them have looked into how Time Window (TW) can 
be used to improve the temporal context in ECG signal 
processing. 

The implementation of the Time Window (TW) approach 
is a crucial technique in signal analysis employed to capture 
the temporal dynamics of data. This technique separates the 
ECG data into defined time intervals, enabling the model to 
examine variations in the signal within a systematic period. 
Employing TW enables the extraction of pertinent information 
from each time segment, yielding enhanced insights into the 
patterns of the ECG signal [10]. 

This research offers a sleep apnea detection model utilizing 
the 1D Convolutional Neural Network (1D-CNN) 
methodology alongside modifications of the Time Window 
(TW), based on numerous prior studies. This model tries to 
work as well as possible by using the best parts of 1D-CNN to 
find complicated ECG signal patterns and TW to deal with 
how the signal changes over time. The suggested model 
greatly enhances sleep apnea detection performance relative to 
prior models, especially for accuracy, sensitivity, and 
specificity, by the integration of 1D-CNN and Time Window 
modifications. The steps in this research method include 
getting ECG signal data, preprocessing the signals, and taking 
features from RR intervals and R-peak amplitude. We then 
implement the Time Window (TW) approach and evaluate the 
model using stratified K-fold cross-validation. The modelling 
uses One-Dimensional Convolutional Neural Networks (1D-
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CNN) for classification purposes. Consequently, this research 
may serve as a more accurate prediction for the detection of 
sleep apnea. 

 
II.  MATERIALS AND METHODS 
The research technique encompasses a comprehensive 
examination process consisting of seven sequential 
procedures: data collection, data preprocessing, feature 
extraction, feature engineering, modeling, model evaluation, 
and performance assessment. Data preparation encompasses 
activities, including segmentation, filtering, and R-peak 
identification. Feature extraction emphasizes the amplitudes 
of R-peaks and RR intervals. This research utilizes stratified 
K-fold cross-validation, including 5 folds. This system 
integrates TW with 1D-CNN and employs the Adam 
optimizer. Performance assessment evaluates the model's 
efficacy by examining metrics including accuracy, specificity, 
sensitivity, and the confusion matrix. FIGURE 1 delineates the 
successive phases of the research process. 

 
FIGURE 1. Research Process Flow Diagram 

A. DATASET 
This research utilized the "Apnea-ECG Database" [22], 
accessible via the PhysioNet platform [23]. This dataset 
comprises recordings from a heterogeneous group of 32 
individuals, specifically 25 males and 7 women, aged between 
27 and 63 years. This dataset lacks comprehensive information 
on the limitations or particular criteria for participant selection. 
Consequently, this study employs the dataset in its original 
form, without stratification or supplementary exclusion 
criteria. This dataset is a publicly accessible resource, 

provided users adhere to the terms and conditions of the 
specified license. Anyone who supplies the requisite reference 
can access the file. TABLE 1 presents the characteristics of the 
participants, encompassing diverse demographic information. 
 

TABLE 1 
Characteristics of the Apnea-ECG Dataset Participants 

Characteristic Value / Mean ± SD 

Subjects (M:F) 32 (25:7) 

Age (years) 48.0 ± 9.9 

Height (cm) 175.4 ± 6.5 

Weight (kg) 90.1 ± 17.6 

Record Length (minutes) 493.5 ± 27.5 

Non-apnea minutes 295.2 ± 126.1 

Apnea minutes 198.4 ± 126.0 

Hours with apnea 6.8 ± 2.7 

AHI (Apnea-Hypopnea Index) 35.3 ± 23.9 

 
The dataset comprises 70 records, divided into two categories: 
35 records of training set and 35 records of a testing set. Each 
recording has a total duration of around 8 hours at a sampling 
rate of 100 Hz. We have labeled each recording with "A" for 
apnea and "N" for non-apnea at one-minute intervals. The 
training set comprises 17045 labeled segments, including 
6514 segments identified as apnea and 10531 segments 
categorized as non-apnea. The test set consists of 17268 
labeled segments, including 6550 classified as apnea and 
10718 classified as non-apnea. Further details concerning the 
quantity of labeled segments for non-apnea and apnea are 
available in TABLE 2. 
 

TABLE 2 
Number of Label Distributions in Dataset 

Dataset Apnea Non-Apnea Total 

Training set 6514 10531 17045 

Test set 6550 10718 17268 

Total 13064 21249 34313 

B. DATA PREPROCESSING 
Previous research has demonstrated that the R-peak amplitude 
and RR interval provide crucial insights into the occurrence of 
sleep apnea. Therefore, we employ a data preprocessing 
technique to extract characteristics from R-peak amplitude and 
RR interval. We divide the signal into 1-minute segments with 
a sampling rate of 100 Hz, as illustrated in FIGURE 2. We 
utilize a Finite Impulse Response (FIR) bandpass filter with an 
order of 30 and a passband of 3~45 Hz, effectively reducing 
noise. The input-output relationship of a FIR filter is 
determined by Eq. (1) [24]. 

𝑦[𝑛] = &ℎ(𝑘). 𝑥[𝑛 − 𝑘]
!"#

$%&

 (1) 
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Here, 𝑥[𝑛 − 𝑘] and 𝑦[𝑛] denote the filter input and output, 
ℎ(𝑘) signifies the filter coefficients, and 𝑁 − 1 indicates the 
quantity of filter coefficients (filter order). As illustrated in 
FIGURE 3, this range guarantees the retention of pertinent 
ECG components while eliminating extraneous frequencies. 
FIGURE 4 illustrates the proper detection of R-peaks using 
the Hamilton method [25], which has a tolerance of 0.1 
seconds. 

 
FIGURE 2. Segmentation Result 

 

 
FIGURE 3. Filtering Result 

 

 
FIGURE 4. R-Peak Detection Result 

C. FEATURE EXTRACTION 
The RR interval represents the duration between two 
successive R-peaks [4]. The characteristics comprise six time 
domain attributes and six frequency domain attributes. Earlier 
studies have demonstrated that the amplitudes of R-peaks and 
RR intervals provide valuable information are important for 
diagnosing sleep apnea because they show how the heart 
reacts to breathing problems [10], [19], [21]. We applied a 
median filter, as described in [26], to the RR interval data to 
eliminate aberrant values that lacked physiological 

interpretation. This study employs a strategy that substitutes 
each data value with the median of an ordered group of nearby 
values. The set's kernel size is three. This computation 
considers three sequential values (i.e., the preceding value, the 
current value, and the subsequent value) for each data point, 
thereafter determining the median of these three values. 
TABLE 3 illustrates the amalgamation of 12 variables derived 
from the RR interval and 6 characteristics obtained from the 
R-peak amplitude. 

TABLE 3 
Feature Extraction 

Name RR 
Interval 

R-Peak 
Amplitude Details 

MRR ✓  Average of RR intervals 

MHR ✓  Average of heart rates 

RMSSD ✓  
Square root of the mean 
of successive RR 
intervals differences 

SDNN ✓  Standard deviation of the 
differences RR intervals 

NN50 ✓  
Number of adjacent RR 
intervals exceeding 50 
ms 

pNN50 ✓  Proportion  NN50 to total 
RR intervals 

VLF ✓ ✓ 
Very low frequencies 
with 0∼0.04 Hz 

LF ✓ ✓ 
Low frequencies with 
0.04∼0.15 Hz 

HF ✓ ✓ High frequencies with 
0.15∼0.4 Hz 

LF/HF ✓ ✓ The ratio of low to high 
frequency 

LF/(LF + HF) ✓ ✓ 
Proportion of low 
frequency to the sum of 
low and high frequencies. 

HF/(LF + HF) ✓ ✓ 
Proportion of high 
frequency to the total of 
low and high frequencies. 

 
FIGURE 5 illustrates one of the results of the RR interval 
feature extraction, encompassing the MRR (Mean RR 
Interval). FIGURE 6 depicts the comparison after the median 
filter is applied. 

 
FIGURE 5. RR Interval Result (MRR) 
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FIGURE 6. Comparison RR Interval Before and After Median Filter (MRR) 

 
The R-peak amplitude denotes the apex of the R-wave, 
indicating respiration. Consequently, there are six frequency 
aspects in addition to those derived from the RR interval. 
FIGURE 7 presents the results of feature extraction from R-
peak amplitude, encompassing attributes like VLF. 

 
FIGURE 7. R-Peak Amplitude Result (VLF) 

D. FEATURE ENGINEERING 
Previous research has established a temporal correlation 
among several components of ECG data. In earlier studies, 
characteristics derived from contemporary parts of the ECG 
signal were used as input. This indicates that the algorithm's 
output relied solely on the characteristics of the present ECG 
signal segments. To address this issue, a Time Window (TW) 
was implemented to improve the attributes by incorporating 
temporal correlations, as illustrated in FIGURE 8. 

 
FIGURE 8. Time Window Architecture 

 

The relevant type of TW is the Moving Time Window. The 
TW size indicates the number of data points or time steps 
included in each analysis window. For this inquiry, the 
specified TW size ranges from 0 to 15. 

E. MODEL EVALUATION 
This research employs stratified K-fold cross-validation with 
five folds to divide the training data into five distinct 
subgroups. Bahrami and Forouzanfar [19] cited the selection 
of five folds to equilibrate the need for a rigorous evaluation 
of model performance with the requirement for adequate 
training data in each iteration. We train the model on four 
subsets in each iteration and validate it on one subset. We 
evaluate the model's performance using the validation data, 
with accuracy serving as the primary metric, after training on 
each fold.  

F. MODELING 
1) 1D-CNN 
Convolutional Neural Networks (CNN) have demonstrated 
efficacy in signal processing. One variant is the 1D 
Convolutional Neural Network (1D-CNN), designed 
primarily for processing signal data. FIGURE 9 depicts the 1D 
Convolutional Neural Network (1D-CNN) architecture. 

 
FIGURE 9. 1D-CNN Architecture 

 
The model comprises several layers, including convolutional 
layers that employ multiple filters to extract features from the 
input data. Each filter possesses distinct weights and biases, 
enabling the network to acquire various features. This layer 
encapsulates spatial hierarchies within data, rendering it 
efficacious for signal processing tasks [27]. The mathematical 
representation of the processes conducted in this layer is 
provided in Eq. (2) [27]. 

𝑥'( = 𝑓(& 𝑥'("# ∗ 𝑤)'( + 𝑏'(
)∈+!

) (2) 

Here, 𝑥'( represents the feature vector generated by the 𝑗,- 
convolution kernel of layer l, 𝑀' represents the feature vector 
set input to layer l, 𝑥)("# indicates the feature vector produced 
by the 𝑖,- convolution kernel in layer l-1, while 𝑤)'(  refers to 
the weight vector associated with the 𝑖,- kernel. This study 
uses maximum pooling, which is usually put after the 
convolutional layer, to cut down on parameters, speed up 
processes, and stop overfitting [27]. This study utilizes 
maximum pooling as delineated in Eq. (3) [27]. 

𝑃)'( =
𝑚𝑎𝑥

(𝑗 − 1)𝑤 + 1 ≤ 𝑘 ≤ 𝑗𝑤 <𝑥)$
( = (3) 

We denote 𝑃)'(  as the result of the pooling process from the 𝑗,- 
neuron in the 𝑖,- channel in the 𝑙,-  layer, where 𝑤 as the 
breadth of the pooling region, and 𝑥)$(  as the 𝑘,- data input 
from the 𝑖,-  channel of the 𝑙,- layer. The activation layer of a 
CNN augments its learning capacity by incorporating 
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nonlinear elements. The convolution procedure is linear, 
producing a linear combination of information. We utilize 
activation functions, such as the Rectified Linear Unit 
(ReLU), to more effectively represent nonlinear interactions 
[27]. This formula is shown in Eq. (4) [27]. 

𝑅𝑒𝐿𝑈 = C
𝑥	𝑖𝑓	𝑥 > 0
0	𝑖𝑓	𝑥	 ≤ 	0 (4) 

We employ a dropout layer as a regularization technique to 
reduce the risk of overfitting. The flattening layer transforms 
the output of preceding layers from a three-dimensional 
format into a one-dimensional vector, which is essential for 
connecting pooling and convolutional layers to fully linked 
layers [28]. The fully connected layer positioned after the last 
pooling layer, links every neuron to all feature maps from the 
preceding layer, extracting advanced features for the classifier, 
as illustrated in Eq. (5) [29]. 

𝐹'( =&𝑥)("# ∗ 𝑤)'( + 𝑏'(
.

)%#

 (5) 

In this context, 𝐹'( represents the neuron's output, whereas 𝑤)'(  
and 𝑏'( are the weights and biases, respectively. The output 
layer often employs the softmax function to generate the final 
diagnostic result. The computation is defined in Eq. (6) [30]. 

𝑦$ =
𝑒/"

∑ 𝑒/#.
)%#

 (6) 

In this context, 𝑦$ denotes the output of the 𝑘,- neuron, 
𝑎$	signifies the 𝑘,- input signal, and 𝑎) indicates the 𝑖,- input 
signal. 
 
2) ADAM OPTIMIZER 
Optimization algorithms are crucial in establishing the 
foundational framework for robots to learn from experience. 
These methods compute gradients and aim to minimize the 
loss function. We can employ various optimization algorithms 
to implement diverse learning strategies. Adam, an acronym 
for adaptive moments. This method is a synthesis of the 
RMSprop and momentum optimization strategies. Adam's 
updating mechanism only considers the smoothed gradient 
and incorporates a method to correct for bias [31]. 

G. PERFORMANCE EVALUATION 
The research assesses the effectiveness and performance of 
classification algorithms through a confusion matrix, an 
essential instrument for machine learning algorithms. The 
matrix compares he system's classification results against the 
anticipated outcomes, assessing the model's capability in 
accurately classifying and predicting features [32]. The 
confusion matrix in TABLE 4 provides a clear understanding 
of the model's strengths and weaknesses, revealing its ability 
to accurately classify data [33]. 

TABLE 4 
Confusion Matrix 

 Predicted Label 

True Label 
TN FP 

FN TP 

 

The study used a confusion matrix to compute performance 
metrics, which are essential for evaluating the model's efficacy 
in identifying sleep apnea and differentiating between positive 
and negative intervals. Below are the equations for these 
calculations [32]. 
1. Accuracy (ACC) 

The ratio of accurately identified samples determines the 
accuracy of sleep apnea detection. It indicates the 
model's ability to appropriately categorize apnea and 
non-apnea intervals. Accuracy is determined by 
summing True Negatives (TN) and True Positives (TP), 
then dividing by the overall number of samples, as 
illustrated in Eq. (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 (7) 

2. Sensitivity (SN) 
Sensitivity is the model's capacity to accurately detect 
sleep apnea cases from all positive samples. It's crucial 
to avoid false negatives, as low sensitivity can lead to 
missed diagnoses. High sensitivity reduces false 
negatives and allows the model to identify as many 
existing apnea cases as possible. Sensitivity is calculated 
by dividing True Positives (TP) by total positive 
samples, as illustrated in Eq. (8) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (8) 

3. Specificity (SP) 
Specificity is defined as a model's ability to accurately 
detect non-apnea samples from all negative samples. 
Low specificity can lead to incorrect diagnoses, while 
high specificity prevents false alarms. Specificity is 
calculated by dividing True Negatives (TN) by the 
overall number of negative samples, ensuring an 
accurate sleep apnea diagnosis, as shown in Eq. (9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (9) 

 

III. RESULTS 
This paper presents the findings from assessing the 
effectiveness of an apnea detection model. The model is 
predicated on ECG readings and employs Time Window 
(TW) alongside a 1D Convolutional Neural Network (1D-
CNN), utilizing the Adam optimizer for optimization. We 
execute data normalization using the MinMax Scaler, as 
described in Eq. (10), which modifies the feature range to span 
from 0 to 1. This guarantees that the values for each sample of 
a feature remain within permissible limits [34]. 

𝑥01 =
𝑥 − 𝑥2).

𝑥2/3 − 𝑥2).
 (10) 

Let 𝑥 denote the initial value of the feature that requires 
normalization, with 𝑥2). and 𝑥2/3 representing the minimum 
and maximum values, respectively. This study employed 
comprehensive model training approaches, as detailed in 
TABLE 5. The parameters included model design, 
hyperparameter configurations, and optimization techniques, 
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all intended to attain optimal results. This particular 
information provides essential insights into the 
methodological technique used. 

TABLE 5 
Training Parameters for the Model 

Hyperparameter Value 

Activation Function Relu, SoftMax 

Learning Rate 0.0001 

Optimizer Adam 

Epochs 100 

Batch Size 128 

 
A detailed overview of the 1D-CNN architecture used in this 
research is presented in TABLE 6. This table presents a 
comprehensive overview of the essential components, 
including the organization and layout of layers, as well as key 
parameters utilized in the architecture. This table provides a 
detailed examination of the individual contributions of each 
factor influencing the model's overall efficacy, thereby 
increasing comprehension of how design choices affect sleep 
apnea diagnosis using ECG data. 

TABLE 6 
1DCNN Architecture Model 

Layer Parameter 

Input - 

1D Conv 1 Number of kernels: 32, kernel size: 5, 
stride: 1 

1D MaxPool Pooling size: 2 

1D Conv 2 Number of kernels: 64, kernel size: 5, 
stride: 1 

1D MaxPool Pooling size: 2 

Dropout 0.7 rate 

Fully-Connected Layer Number of neurons: 32, activation: relu 

Output Number of neurons: 2, activation: softmax 

 
This study utilized a Learning Rate Scheduler to enhance 
training efficiency. The objective of this scheduler is to 
progressively reduce the learning rate following the 70th 
epoch. Every 10 epochs, a factor of 0.1 will diminish the 
learning rate. We specifically developed this method to 
enhance the model's stability and boost performance on 
validation and test data. The findings of this thorough 
performance analysis are presented in TABLE 7. 

TABLE 7 
Performance Evaluation 

Time Window 
Size 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

0 81.65 75.23 85.62 

1 85.22 79.10 89.02 

2 86.56 80.54 90.32 

3 87.67 81.66 91.45 

4 88.26 82.76 91.73 

5 88.55 83.73 91.60 

6 88.83 83.68 92.11 

7 89.12 84.35 92.16 

8 89.17 84.27 92.31 

9 89.38 84.75 92.35 

10 89.41 85.04 92.25 

11 89.54 84.99 92.49 

12 89.61 85.00 92.60 

13 89.73 85.41 92.55 

14 89.80 85.19 92.82 

15 89.87 86.16 92.30 

 
The model's performance evaluation results in this study 
demonstrate that the 1D-CNN model with a Time Window 
(TW) combination has improved performance compared to 
previous research. This model achieves an accuracy score 
reaching 89.87%, a specificity score reaching 92.30%, and a 
sensitivity score reaching 86.16% with a TW size of 15. 
Compared to the study by Rizal et al. [9], which used standard 
classification methods with Support Vector Machine (SVM) 
and got an accuracy of 89.5%, these results show a big 
improvement in performance. Wang et al. [10] conducted 
research with a Multilayer Perceptron (MLP) in conjunction 
with a Time Window, attaining an accuracy score reaching 
87.3%, sensitivity score reaching 85.1%, and specificity score 
reaching 88.7%. Conversely, the hybrid ZFNet-BiLSTM 
model utilized by Bahrami and Forouzanfar [19] achieved an 
accuracy score reaching 88.13%, sensitivity score reaching 
84.26%, and specificity score reaching 92.27%. Wang et al. 
[21] conducted research using the LeNet-5 model on 1D-
CNN, achieving an accuracy score reaching 87.6%, a 
sensitivity score reaching 83.1%, a specificity score reaching 
90.3%, and an AUC score reaching 0.950. Not only does this 
study add to what has already been written, but it also makes 
new discoveries by showing how using TW techniques and 
1D-CNN can greatly enhance the ability of ECG signals to 
detect sleep apnea, especially when it comes to the model's 
capacity to identify intricate patterns in biological signals. A 
succinct summary of the model architecture is presented in 
TABLE 8. 

TABLE 8 
Summary of the 1DCNN Architecture 

Layer Output Shape Parameter 

Input (None, 288, 1) 0 

1D Conv 1 (None, 284, 32) 192 

1D MaxPool (None, 142, 32) 0 

1D Conv 2 (None, 138, 64) 10304 

1D MaxPool (None, 69, 64) 0 

Dropout (None, 69, 64) 0 

Fully-Connected Layer (None, 32) 141344 

Output (None, 2) 66 

 
We assessed the system's classification performance using a 
confusion matrix, as illustrated in FIGURE 10. The model 
successfully classified 5815 out of 6469 data segments, with 
654 misclassified. This indicates the model's robustness in 
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detecting apnea events. The True Positive (TP) is 2208, and 
the False Negative (FN) is 354, resulting in a high sensitivity 
of 86.16%. Conversely, the False Positive (FP) is 300, leading 
to a specificity of 92.30%. While the model performs well in 
detecting both apnea and non-apnea cases, it shows slightly 
more misclassification of negative cases (non-apnea), possibly 
due to the dataset imbalance. A potential dataset imbalance 
could influence the model's slight tendency to misclassify 
negative cases (non-apnea), despite its strong ability to 
accurately classify positive cases of apnea. This imbalance 
may cause the model to slightly favor one class over the other 
to minimize statistical error, though overall performance 
remains consistent. 
 

 
FIGURE 10. Confusion Matrix Result 

 
FIGURE 11 and FIGURE 12 present the graphs illustrating 
the training loss and validation loss, respectively. FIGURE 11 
illustrates the progression of training loss over the epochs, 
reflecting the model's advancement in error minimization 
throughout the training process. An even and progressively 
declining loss curve indicates the model's efficacy in learning 
from the training data and approaching an optimal solution. 

 
 FIGURE 11. Training Loss Result 

 
 

Conversely, FIGURE 12 illustrates the validation loss, which 
monitors the model's efficacy on previously unobserved 
validation data. This picture is especially beneficial for 

assessing the model's generalization capability. A significantly 
lower validation loss suggests that the model is not overfitting 
and has the potential to generalize well to new data, whereas a 
validation loss curve that levels out or rises may signify 
potential overfitting. 

 
FIGURE 12. Validation Loss Result 

 
Both data demonstrate a consistent decrease in training and 
validation losses, signifying decreased errors and enhanced 
performance. Beginning about epoch 71, the rate of decline in 
both training loss and validation loss diminishes, and the loss 
values begin to stabilize, indicating that the model has reached 
a state of convergence. 
We assess the model's ability to differentiate between positive 
and negative classes utilizing the Area Under the Curve 
(AUC) and the Receiver Operating Characteristic (ROC), as 
illustrated in FIGURE 13. This graphic depicts the balance 
between true positive and false positive rates at various 
threshold levels, providing a thorough assessment of the 
classifier's effectiveness. The AUC score functions as a 
singular metric to evaluate the model's ability to differentiate 
across classes, with a higher AUC signifying superior 
classification performance. 

 
FIGURE 13. ROC & AUC Result 
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IV. DISCUSSION 
This research sought to enhance sleep apnea detection through 
the integration of 1D-CNN and Time-Wave (TW) 
methodologies. We employed the Adam optimizer and 
modified the TW size from 0 to 15. The objective was to 
identify the optimal configuration to improve the model's 
accuracy and stability while capturing significant temporal 
trends. The amalgamation of 1D-CNN and TW methodologies 
is crucial as it allows the model to discern complex temporal 
correlations between ECG signals. Conventional techniques 
frequently fail to detect nuanced differences signifying apnea 
occurrences. The study provides a thorough methodology to 
improve detection accuracy by utilizing the advantages of 1D-
CNN and TW.  
The results expand the understanding of sleep apnea diagnosis 
by illustrating how the amalgamation of 1D-CNN and TW 
methodologies significantly improves the model's capacity to 
grasp intricate temporal characteristics in ECG signals. 
Current diagnostic frameworks may incorporate the proposed 
model, enabling healthcare providers to employ improved 
algorithms for more accurate and timely detection of sleep 
apnea. This development enhances detection accuracy and has 
therapeutic implications for improved patient outcomes. 
FIGURE 14 depicts the correlation between the feature count 
and the growing TW size. 

 
FIGURE 14. Feature Distribution 

 

 
FIGURE 15. Data Distribution 

 
FIGURE 14 illustrates that an increase in TW size to 15 results 
in a rise in the number of features from 18 to 288. This is 
attributable to the model's function in encompassing a broader 
spectrum of data variances and patterns. The enhanced feature 
extraction capability facilitates a more thorough study of the 

ECG data, hence augmenting the accuracy of sleep apnea 
event identification. By manipulating and integrating data 
from several TW segments, the model generates additional 
features that allow it to assess temporal information in the 
ECG signal, resulting in improved performance metrics. Refer 
to FIGURE 15 to see the decrease in data volume as the TW 
size increases.  FIGURE 15 demonstrates a reduction in data 
volume from 34046 at TW size 0 to 32355 at TW size 15, 
underscoring the impact of TW on data organization. As the 
time window size expands, the emergence of Not a Number 
(NaN) values during the shifting process leads to the 
discarding of an increased volume of data, leaving only valid 
data for subsequent analysis. FIGURE 16 presents the 
accuracy results.  
 

 
FIGURE 16. Accuracy Result 

 
The model achieves peak accuracy of 89.87% during trials 
with a temporal window size of 15, as illustrated in FIGURE 
16. Increasing the size of the temporal frame leads to more 
acquired characteristics, which makes it easier to find small 
changes in ECG signals that are linked to sleep apnea events. 
The model can collect more complex and important temporal 
data, which improves its ability to recognize patterns and find 
changes. This lets it tell the difference between segments that 
show signs of apnea and those that don't, leading to higher 
accuracy. For an analysis of sensitivity concerning TW size, 
please refer to FIGURE 17. 

 
FIGURE 17. Sensitivity Result 

 
The model's sensitivity data indicates a peak of 86.16% with a 
TW size of 15, as illustrated in FIGURE 17. This is due to its 
ability to utilize features from a larger dataset, thereby 
improving its proficiency in recognizing complex patterns and 
temporal data. As the model improves its ability to identify 
genuine apnea cases, its sensitivity increases, resulting in a 
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higher rate of accurate positive case detection. Please refer to 
FIGURE 18 for an analysis of the TW size specificity results. 

 
FIGURE 18. Specificity Result 

 
FIGURE 18 shows that a TW size of 14 achieves the 
maximum specificity of 92.82%. A TW size of 15 exhibits 
enhanced accuracy and sensitivity, although it fails to achieve 
ideal specificity. Increased TW sizes can improve detection 
capabilities, but may also create complexity that impacts 
specificity. Consequently, a TW size of 14 provides a superior 
balance between sensitivity and specificity. The performance 
of this study is assessed through a systematic analysis and 
comparison of results with prior investigations, as presented in 
TABLE 9. 

TABLE 9 
Comparison of Result with Past Research 

Research Algorithm ACC 
(%) 

SN 
(%) 

SP 
(%) AUC 

[9] SVM 89.5 - - - 

[10] TW-MLP 87.3 85.1 88.7 0.945 

[19] 1DCNN-
DRNN 88.13 84.26 92.27 - 

[21] 1DCNN 87.6 83.1 90.3 0.950 
Proposed 
Research 

TW-
1DCNN 89.87 86.16 92.30 0.96 

 
The research indicates that the Time Window approach 
utilizing the TW-1DCNN with Time Window size of 15 is the 
most efficacious for identifying patients with apnea. The TW-
1DCNN achieved the maximum accuracy and sensitivity 
required for detecting individuals experiencing apnea events, 
enabling prompt intervention. The approach attained an 
accuracy score reaching 89.87%, a sensitivity score reaching 
86.16%, a specificity score reaching 92.30%, and an AUC 
score reaching 0.96, it was observed that increasing the TW 
size leads to a larger feature set, allowing the model to capture 
more variation and patterns in the data. 
The 1D-CNN with a time window size of 5 attained accuracy 
score reaching 88.55%, sensitivity core reaching 83.73%, and 
specificity score reaching 91.60%, respectively. Although 
both the TW-MLP [10] and TW-1DCNN had an identical 
Time Window size of 5, the 1D-CNN consistently surpassed 
the MLP regarding accuracy and specificity. The improved 
performance is because the 1D CNN can extract deeper, more 
complex information through convolutional layers. This is 
important for finding the delicate patterns connected to sleep 
apnea events. However, the MLP's rudimentary feature 

extraction technique constrains it, resulting in diminished 
accuracy. 
The model's ability to accurately classify positive cases of 
apnea is strong, but it struggles more with detecting negative 
cases due to the dataset imbalance. This imbalance can cause 
the model to favor one class over another to minimize 
statistical error, leading to inconsistent performance. Future 
research should prioritize improving sleep apnea detection 
systems by developing more effective feature selection 
approaches to find the most relevant features. This may 
diminish computer complexity while preserving high 
accuracy, rendering the method more viable for clinical 
applications. Enhancing feature selection may assist 
healthcare professionals in more accurately recognizing sleep 
apnea, ultimately improving patient outcomes through earlier 
and more precise diagnosis. 

V. CONCLUSION 
This research employs feature extraction methods and deep 
learning algorithms the detection of sleep apnea. The method 
involves seven stages: data collection, data preprocessing, 
feature extraction, feature engineering, model evaluation, 
modelling, and performance evaluation. The experiment 
merges 12 characteristics from the RR interval and 6 from the 
R-peak amplitude. The 1D Convolutional Neural Network 
(1D-CNN) with the Adam optimizer is implemented, and a 
Time Window (TW) varies from 0 to 15. The results show that 
the model with a TW size of 15 achieved the maximum 
performance, achieving an accuracy score reaching 89.87%, 
sensitivity score reaching 86.16%, specificity score reaching 
92.30%, and AUC value reaching 0.96. The goal of this study 
is to present a different way to find sleep apnea by analyzing 
single-lead ECG data. The results show that the proposed 
model produces better outcomes than previous studies. The 
broader implications of this research extend to medical 
informatics and sleep medicine, suggesting that advanced 
algorithms could facilitate more precise diagnostics and 
personalized treatment plans for patients with sleep apnea. The 
model could be implemented in clinical settings, such as sleep 
clinics and cardiology departments, to assist healthcare 
professionals in accurately diagnosing sleep apnea. The model 
effectively classifies positive apnea cases, but struggles to 
identify negative ones due to a dataset imbalance, suggesting 
the need for a balanced dataset for improved efficacy. Future 
research should focus on enhancing sleep apnea detection 
methods by focusing on more efficient feature selection 
methods to determine the most relevant features. 
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