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ABSTRACT The fact that lung cancer continues to be the leading cause of cancer-related death around the world emphasizes 
how important it is to improve diagnostic methods. Using computed tomography (CT) images and deep learning techniques, the 
goal of this study is to improve the classification of lung cancer. EfficientNetB1 and Inception V3 are two well-known 
convolutional neural network (CNN) architectures that we compare the performance of our modified ResNet50 architecture against 
in order to determine how well it performs in the classification of lung nodules. Analyzing the effects of various preprocessing 
and hyperparameter optimization methods on model performance is one of our research objectives. Another is to determine how 
well these models improve diagnostic accuracy. An extensive collection of CT images with annotated lung nodule classifications 
make up the utilized dataset. To ensure accurate model training and improve image quality, a rigorous preprocessing pipeline is 
used. Using the Keras Sequential framework, the models are trained with optimal dropout rates and L2 regularization to prevent 
overfitting. Metrics like accuracy, loss, and confusion matrices are used to evaluate model performance. A comprehensive 
evaluation of the model's sensitivity and specificity across various thresholds is also provided by means of the Free-Response 
Receiver Operating Characteristic (FROC) curve and Area Under the Curve (AUC) values. The adjusted ResNet50 model showed 
prevalent order exactness, accomplishing a precision of 98.1% and an AUC of 0.97, in this way beating different models in the 
review. EfficientNetB1 had an accuracy of 96.4 percent and an AUC of 0.94, while Inception V3 had an accuracy of 95.8 percent 
and an AUC of 0.93, as a comparison. Based on these findings, it appears that the accuracy of lung cancer detection from CT 
images can be significantly improved by combining specialized preprocessing and training methods with advanced CNN 
architectures. With potential implications for clinical practice and future research directions, this study offers a promising strategy 
for increasing lung cancer diagnostic accuracy. 

INDEX TERMS Lung Cancer, Deep Learning, Convolutional Neural Networks, ResNet50, CT Images, Classification, FROC, AUC. 

 
I. INTRODUCTION 
One of the most prevalent and fatal types of cancer, lung cancer 
continues to be a major global health concern. The World 
Health Organization estimates that it is responsible for nearly 
18% of all cancer-related deaths worldwide. This alarming 
mortality rate highlights the urgent need for advancements in 
diagnostic techniques to detect the disease earlier, when 
treatment options are more effective and patient outcomes can 
be significantly improved.[1] 

A. BACKGROUND 
There are significant limitations to conventional lung cancer 
diagnostic procedures, such as chest X-rays and computed 
tomography (CT) scans. Despite offering a definitive diagnosis, 
biopsies are invasive and carry inherent risks. Despite their non-
invasive nature, radiologists' interpretations of imaging 
techniques vary. Patients' prognoses can be harmed by 
inconsistent diagnoses and delayed treatment as a result of this 
variability. Automated, non-invasive diagnostic tools that help 

radiologists make assessments that are more accurate and 
consistent have sparked interest due to these limitations.[2] 
Improvements in medical imaging diagnostics have been made 
possible by recent advances in machine learning and artificial 
intelligence (AI). A subset of deep learning models known as 
convolutional neural networks (CNNs) have performed well in 
a variety of image classification tasks. CNNs consequently 
extricate and gain progressive elements from crude pictures, 
making them skilled at recognizing complex examples related 
with illnesses like disease. CNNs are positioned as a potent 
instrument for increasing the accuracy and dependability of 
lung cancer diagnostics thanks to this capability.[3] 
CT images are used in our study to classify lung cancer using 
CNNs. We compare the performance of our modified ResNet50 
architecture to that of other well-established CNN architectures 
like EfficientNetB1 and Inception V3, which have been 
specifically optimized for this task.[4] To better distinguish 
between benign and malignant lung nodules, the modified 
ResNet50 model incorporates hyperparameter optimization and 
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customized preprocessing methods. A substantial collection of 
CT images with lung nodule classifications annotated are 
included in the used dataset, facilitating a robust training and 
evaluation procedure. Accuracy, loss, and confusion matrices 
are among the various metrics used to evaluate model 
performance. The Free-Response Receiver Operating 
Characteristic (FROC) curve, which takes into account 
sensitivity and specificity across various threshold settings to 
provide a nuanced evaluation of model performance, receives 
our special attention.[5] 

B. MOTIVATION 
 
The primary goal of this research is to address the pressing need 
for early and accurate detection of lung cancer, which is 
essential for enhancing survival rates and patient outcomes. We 
hope to add to the growing body of evidence supporting AI in 
medical diagnostics by developing and validating a high-
performance deep learning model.[6] Our objective is to make 
it easier to incorporate AI-driven diagnostic tools into clinical 
practice, which will increase the capabilities of radiologists and 
improve the overall quality of patient care. 
This study demonstrates the transformative potential of deep 
learning in the diagnosis of lung cancer. We hope to make it 
possible for a quicker diagnosis of lung cancer and more 
effective treatment options by increasing the accuracy and 
dependability of lung cancer detection from CT images. This 
could set a precedent for future research and clinical 
applications in the field and significantly improve patient 
outcomes worldwide. 

C. OBJECTIVES 
 
The primary objective of this research is to create and improve 
a modified ResNet50 architecture that is made to be used for 
CT-based lung cancer classification. In order to improve the 
model's performance, this involves designing it using 
specialized preprocessing methods and hyperparameter 
optimization. Additionally, we intend to contrast the modified 
ResNet50 with other well-established CNN architectures, such 
as Inception V3 and EfficientNetB1. The comparison will be 
comprehensive and include metrics like accuracy, loss, and 
confusion matrices. The Free-Response Receiver Operating 
Characteristic (FROC) curve, which is used to evaluate 
sensitivity and specificity across various threshold settings, will 
be the primary focus. By accomplishing these goals, we try to 
add to the progression of elite execution artificial intelligence 
driven demonstrative apparatuses that can work with ahead of 
schedule and precise location of cellular breakdown in the 
lungs, eventually working on understanding results and clinical 
navigation.[7] 
 
II. LITERATURE SURVEY  
Lung cancer is one of the most prevalent and fatal forms of 
cancer worldwide, making it a critical public health issue. The 
World Health Organization says that lung cancer is responsible 
for nearly 18% of all cancer deaths. This shows how important 
it is to have better ways of diagnosing the disease. Because lung 
cancer is typically diagnosed at an advanced stage, when there 
are few treatment options, early and accurate detection is 
essential for improving patient outcomes.[8] 
In the field of medical imaging, recent advancements in 
artificial intelligence (AI) and deep learning have shown great 

promise. provided a deep learning method for CT scan 
identification of pancreatic ductal adenocarcinoma (PDAC). By 
combining 2D and 3D CNNs to capture both local and global 
features, their method was able to recognize PDAC lesions with 
high responsiveness and specificity. Liu and co. 2020) utilized 
a comprehensive CT scan dataset to create a sophisticated deep 
learning model for the early detection of pancreatic cancer. 
[9]In clinical validation tests, their multi-scale 3D CNN design 
demonstrated promising improvements in detection accuracy. 
Xu and others 2021) proposed a cutting-edge 3D CNN 
framework for CT scan pancreatic lesion detection that 
outperformed conventional approaches in terms of sensitivity 
and specificity. 

Chen and others A 3D U-Net-based deep learning model for 
CT image segmentation and classification of pancreatic cancer 
was released in 2018). The boundaries of cancer were 
effectively delineated using their method, and precise volume 
calculations and treatment planning were made possible. Wang 
and others Preoperative CT images were used to predict 
prognosis for pancreatic cancer patients using radiomic features 
(2019). Based on the characteristics of the tumor, their deep 
learning-based method divided patients into risk groups, 
facilitating personalized treatment plans. Lee and others Using 
CT scans and deep learning architectures, 2020) created a 
staging system for pancreatic cancer that provides valuable 
insights for treatment planning and prognosis evaluation. Shen 
and co. [10] A hybrid CNN-LSTM architecture (2020) was 
proposed for the early detection of pancreatic lesions, analyzing 
temporal changes in CT images to identify potentially 
dangerous lesions before they progress. 

The significant potential of deep learning in the detection 
and classification of various kinds of cancer, including lung 
cancer, is brought to light by these advancements. CNNs have 
been extensively used to analyze CT images in the field of lung 
cancer detection. Shen and co. 2017) created a deep learning 
model that used a multi-crop convolutional neural network to 
detect lung nodules with high sensitivity and specificity. Liao 
and co. 2019) proposed and demonstrated promising diagnostic 
accuracy results for an end-to-end training framework for lung 
nodule analysis. Wang and others For the purpose of classifying 
lung nodules, a study (2019) compared various CNN 
architectures, such as ResNet and DenseNet, highlighting the 
advantages of deeper models for capturing complex features. 
Our study introduces a modified ResNet50 architecture that is 
optimized for the classification of lung cancer, building on 
these advancements. He and others 2016) at first proposed 
ResNet, acquainting lingering learning with alleviate the 
disappearing slope issue in profound organizations. In order to 
improve the model's capability of detecting lung nodules, our 
modification employs hyperparameter optimization and 
specific preprocessing methods. In medical image analysis, 
evaluation metrics like accuracy, precision, recall, and the F1-
score are frequently used. However, by plotting sensitivity 
against the average number of false positives per image, the 
Free-Response Receiver Operating Characteristic (FROC) 
curve provides a more nuanced evaluation for lung cancer 
detection. 

The literature demonstrates that CNNs have a significant 
potential to improve the consistency and accuracy of CT-based 
lung cancer diagnosis. This study aims to add to the growing 
body of evidence supporting the integration of AI in medical 
diagnostics by developing, optimizing, and comparing a 
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modified ResNet50 model to other well-established 
architectures. In the end, the objective is to make it possible for 
lung cancer patients to be detected earlier and have better 
treatment outcomes. 
1) MODIFIED RESNET50 ARCHITECTURE FOR LUNG 
CANCER DETECTION 
This study presents a modified ResNet50 architecture 
specifically tailored for the classification of lung nodules in CT 
images. By incorporating advanced preprocessing techniques 
and hyperparameter optimization, [11] the model achieved 
superior accuracy, precision, recall, and F1-score, significantly 
enhancing the detection and classification of lung cancer. 
2) COMPARATIVE ANALYSIS OF CNN ARCHITECTURES 
The research conducts a comprehensive comparative analysis 
between the modified ResNet50 and other established CNN 
architectures, such as EfficientNetB1 and Inception V3. The 
study highlights the strengths and weaknesses of each model, 
providing valuable insights into the effectiveness of different 
architectures for lung cancer diagnosis [12]. 
3) APPLICATION FOR FROC CURVE FOR EVALUATION 
The study employs the Free-Response Receiver Operating 
Characteristic (FROC) curve, offering a more detailed 
evaluation of the models' sensitivity and specificity. This 
approach allows for a nuanced understanding of the models' 
performance in detecting lung nodules, with a focus on 
minimizing false positives, thereby contributing to the 
refinement of diagnostic methodologies in lung cancer 
detection. 
 
III.  EXISTING SYSTEM   
Imaging methods like chest X-rays and CT scans, which are 
frequently supplemented by biopsies, are the foundation of 
traditional lung cancer diagnosis [13]. Despite their 
effectiveness, these strategies have significant drawbacks. For 
instance, interpreting CT scans can take a long time, and when 
biopsies are required, the procedure is invasive. In addition, 
factors like radiologist fatigue and varying levels of expertise 
can affect the accuracy of CT scan interpretation. The purpose 
of computer-aided detection (CAD) systems is to provide 
radiologists with additional diagnostic support. However, 
conventional CAD techniques struggle to accurately 
distinguish between benign and malignant nodules and 
frequently result in a large number of false positives. Finding 
diagnoses that are both accurate and consistent is extremely 
difficult due to this restriction [14]. 

Advanced CAD systems that make use of convolutional 
neural networks (CNNs) have been developed as a result of 
recent advancements in artificial intelligence (AI), particularly 
in the field of deep learning. By learning and extracting 
complex patterns from imaging data, these deep learning 
models can significantly improve diagnostic accuracy, 
according to research. CNNs, for instance, can automate the 
process of extracting features and boost detection sensitivity 
and specificity. 

AI-driven diagnostic tools remain difficult to implement in 
clinical practice on a large scale in spite of these advancements. 
[15] The need for extensive regulatory approval, substantial 
computational resources for model training and inference, and 
large, annotated datasets to train these models effectively are 
key obstacles. The integration of AI into routine clinical 
practice, where it has the potential to significantly reduce 
human error and improve diagnostic outcomes, requires 

addressing these obstacles. This study aims to contribute to the 
development of advanced lung cancer diagnostic tools by 
addressing these limitations and examining the potential of 
deep learning models. We hope to improve diagnostic accuracy 
and dependability by optimizing and testing a modified 
ResNet50 model. This will ultimately make it possible to detect 
lung cancer earlier and more effectively. 
 
IV. PROPOSED SYSTEM  
Utilizing cutting-edge deep learning methods to improve 
diagnostic accuracy and efficiency when analysing CT images 
of the lungs, the proposed system aims to significantly improve 
lung cancer detection and classification through a sophisticated, 
optimized ResNet50 architecture [16]. 
Key Enhancements in Our Modified ResNet50 Model: 
Advanced Preprocessing and Hyperparameter 
Optimization: In order to improve feature extraction and 
image quality, we have implemented specific preprocessing 
steps. Noise reduction, image normalization, and contrast 
enhancement are all examples of this. To improve the model's 
ability to distinguish between benign and malignant lung 
nodules, extensive hyperparameter tuning has been carried out 
to optimize parameters like learning rate, batch size, and 
network depth [17]. 
Integration of 2D and 3D CNNs: To capture both local and 
global CT scan features, our system makes use of both 2D and 
3D convolutional neural networks. The drawbacks of 
conventional methods that rely solely on information in two 
dimensions are overcome by this dual approach, which 
improves the model's ability to identify and characterize 
nodules with greater precision. The integration makes it 
possible to examine the CT images' spatial relationships in 
greater depth [18]. 
Enhanced Feature Extraction: The architecture of the model 
has been modified to better capture and comprehend intricate 
patterns in CT images. This includes using residual connections 
and advanced convolutional layers, both of which enhance 
feature learning and representation. The model is able to better 
comprehend and categorize the intricate patterns associated 
with various kinds of lung nodules thanks to these 
modifications.  
Computational Efficiency: The model has been optimized so 
that it combines high performance with low computational 
costs. Model pruning, quantization, and efficient network 
architectures have been used to maintain high diagnostic 
accuracy while simultaneously reducing computational load 
and memory usage. Because of this, the model can be used in 
clinical settings where resources may vary. 
Clinical Relevance and Practical Considerations: The 
system's user-friendliness for radiologists and seamless 
integration with existing diagnostic workflows are two 
examples of practical considerations for clinical adoption. In 
order to ensure that the system adheres to clinical standards and 
practices, we address regulatory considerations to facilitate 
smooth implementation in healthcare environments. 
Our proposed system aims to advance lung cancer diagnosis by 
focusing on these key areas: advanced preprocessing, dual 
CNN integration, enhanced feature extraction, computational 
efficiency, and clinical relevance [19]. The enhancements are 
intended to support more reliable and timely detection of lung 
nodules by increasing accuracy, efficiency, and practical 
applicability. In addition to addressing the drawbacks of 
traditional diagnostic methods, this strategy makes it easier to 
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incorporate AI-driven tools into routine clinical practice, which 
improves overall patient care. 
Preprocessing 
Let I(x,y,z)I(x, y, z)I(x,y,z) represent the input CT image in a 
3D space, where (x,y)(x, y)(x,y) are the spatial coordinates and 
zzz represents the slice number. 
Noise Reduction:  To smooth an image, a Gaussian filter is 
applied to reduce high-frequency noise and variations. This 
filter works by averaging pixel values in a local neighbourhood, 
with weights determined by a Gaussian function. The standard 
deviation of the Gaussian function controls the extent of the 
smoothing, where a larger standard deviation results in more 
blur. By applying this filter, the image becomes less detailed but 
cleaner, which helps in reducing noise and making features 
more uniform. This process improves the quality of subsequent 
image analysis and processing by removing fine-grained 
fluctuations. Apply a Gaussian filter Gσ to smooth the image as 
shown in Eq. (1) [20]. 

Ismooth(x, y, z) = I(x, y, z) ∗ Gσ     (1) 
Image Normalization:  Image normalization involves 
adjusting pixel intensities to a standard range to enhance image 
consistency and improve processing performance. This process 
typically transforms the smoothed image by subtracting the 
mean pixel intensity and dividing by the standard deviation. 
This adjustment centers the pixel values around zero with a 
standard deviation of one, making the image data more uniform 
and reducing sensitivity to variations in image lighting and 
contrast. This technique helps standardize inputs for subsequent 
image analysis, improving the effectiveness of machine 
learning models and other processing algorithms. Normalize 
the pixel intensities: 
Eq. (2)  [21]. 

𝐼{"#$%}((,*,+) =	 $𝐼{-%##./}((,*,+) − 	𝜇'{𝜎}  (2) 
 
where μ and σ are the mean and standard deviation of the pixel 
intensities. 
Contrast Enhancement: Enhance the contrast using 
techniques like histogram equalization. 
2D CNN Feature Extraction: 
To enhance image features, each 2D slice of the normalized 
image is processed using a 2D convolutional layer. This layer 
applies a set of convolutional filters to the image, extracting and 
emphasizing important features. After the convolution 
operation, the resulting feature map is passed through the ReLU 
activation function. ReLU introduces non-linearity by setting 
all negative values to zero, allowing the network to learn more 
complex patterns and improve feature detection. This process 
helps the model capture and refine the relevant details in the 
image, which is crucial for accurate image analysis and 
classification. For each 2D slice Inorm(x,y,z), apply 2D 
convolution Eq. (3) [22]. 

𝐹{01}((,*,+) =	 {𝑅𝑒𝐿𝑈}0𝑊{01} ∗ 𝐼{"#$%}((,*,+) +	𝑏{01}5 (3) 
 
where W_2D and b_2D  are the weights and biases of the 2D 
convolutional layers, and ReLU is the activation function. 
3D CNN Feature Extraction 
To extract features from a 3D image stack, a 3D convolutional 
layer is applied across the entire volume. This involves 
convolving the entire stack of normalized images with 3D 
convolutional filters, followed by the addition of biases. The 
resulting feature maps are then processed through the ReLU 
activation function, which introduces non-linearity by zeroing 

out negative values. This operation allows the model to capture 
and emphasize spatial patterns and structures in three 
dimensions, improving its ability to understand complex 
features and relationships within the 3D image data. 
For the entire 3D image stack, apply 3D convolution Eq. (4) 
[23]. 
𝐹{21}((,*,+) =	 {𝑅𝑒𝐿𝑈} 6𝑊{21} ∗ 	𝐼3\.5(.{"#$%}6((,*,+) +	𝑏{21}7 

(4) 
where W_3D and b_3D are the weights and biases of the 3D 
convolutional layers. 
 
Feature Fusion: 
Feature fusion involves integrating features extracted from both 
2D and 3D convolutional layers to leverage the strengths of 
each approach. In this process, features obtained from 2D 
convolutions and those from 3D convolutions are concatenated 
to form a unified feature representation. This fusion combines 
local and global information captured by the different 
convolutional layers, enhancing the model's ability to 
understand and interpret complex patterns within the image 
data. The resulting fused features provide a more 
comprehensive view, improving the overall performance of the 
model in tasks such as image classification and object detection. 
Combine the 2D and 3D features Eq. (5) [24]. 

𝐹{78-59} =	 8	𝐹{01}, 𝐹{21}: (5) 
 
where F_2D, F_3D denotes the concatenation of the feature 
vectors. 
 
Optimization and Efficiency: 
During the training of the model, the objective is to minimize 
the cross-entropy loss function. This function measures the 
difference between the predicted probabilities and the actual 
class labels, aiming to reduce the discrepancy between them. 
By optimizing this loss function, the model learns to make more 
accurate predictions. The cross-entropy loss is calculated by 
summing the negative log probabilities of the correct class 
labels, weighted by their true probabilities. Minimizing this loss 
improves the model’s performance by enhancing its ability to 
correctly classify and predict the classes in the given data. 
During training, minimize the cross-entropy loss function Eq. 
(6) [25]. 

{𝑳𝒐𝒔𝒔} = 	−	∑ 𝑷0 𝒄	 ∣∣ 𝑭{𝒇𝒖𝒔𝒆𝒅} 5{𝒄}𝒚{𝒄}\𝒍𝒐𝒈   (6) 
Model Pruning and Quantization: 
Optimize the trained model for deployment by reducing the 
number of parameters and quantizing the weights to lower bit 
representations, maintaining a balance between performance 
and computational efficiency. 
 
V. METHODOLOGY 
A. DATASET PREPARATION 
In this study, we utilized a public dataset from Kaggle, 
consisting of 1,190 lung CT images in PNG and JPG formats. 
The dataset, titled "IQ-OTH/NCCD - Lung Cancer Dataset," is 
available for free download at  
https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-
lung-cancer-dataset. 
We categorized these images into three classes: normal, benign, 
and malignant, as detailed in Table 1 and illustrated in Figure 1. 
The dataset is organized into three distinct folders for training, 
validation, and testing. The training folder contains images used 

https://jeeemi.org/index.php/jeeemi/index
https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset
https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 7, No. 1, January 2025, pp: 38-46;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                                                      42               

for training the system, the validation folder is used for model 
validation, and the test folder is used for evaluating the model's 
performance. To streamline the simulation process, the dataset 
was pre-split as follows: 
 

TABLE 1 
DATASET CT SCAN IMAGE SPLITTING 

Splitting of Dataset  Training  Validation  Testing  
Normal 
Benign 

Malignant 

138 
316 
368 

38 
89 

103 

21 
47 
56 

Normal: Images depicting lungs without disease or nodules, 
serving as control samples. 
Benign: Images showing non-cancerous conditions such as 
hamartomas or granulomas, which are typically stable and less 
aggressive. 
Malignant: Images containing various types of lung cancer, 
including adenocarcinoma, large cell carcinoma, and squamous 
cell carcinoma. 
 
 
 

      
 

(a)               (b)                    (c)  
FIGURE 1. CT Images for Lung Cancer, (a) Benign: This part of the figure 
shows benign cells, (b) Malignant: This part represents malignant cells, (c) 
Normal: This part illustrates normal cells. 
 
B. DATA PREPROCESSING 
The preprocessing of CT images before inputting them into the 
ResNet50 model involves several key steps, each represented 
by mathematical operations to ensure consistency and enhance 
the model's performance. These steps include normalization, 
resizing, cropping, padding, and data augmentation. 
1. Normalization 
Normalization is crucial to bring the pixel intensity values 
within a specific range, typically [0, 1] or [-1, 1], to reduce 
variability caused by different imaging protocols. 
Let I(x,y) represent the intensity of a pixel at location (x,y)  in 
the CT image. The normalized intensity Inorm(x,y) can be 
computed as Eq. (7) [26]. 

𝐼{"#$%}((,*) =	 $𝐼(𝑥, 𝑦) −	𝐼{%A"}'$𝐼{%B(} −	𝐼{%A"}' (7) 
 
In the context of CT image processing, pixel intensity 
normalization is a critical step for standardizing the image data. 
The minimum pixel intensity in the CT image, denoted as Imin
, represents the lowest value observed across all pixels in the 
image. Conversely, Imax  signifies the highest pixel intensity 
found in the image. To ensure that pixel values are consistently 
scaled within a defined range, typically [0, 1], normalization is 
performed using these parameters. This process transforms 
each pixel's intensity by rescaling it relative to Imin and Imax . 
As a result, the pixel values are adjusted proportionally, with 
Imin being mapped to 0 and Imax to 1, effectively normalizing 
the entire range of pixel intensities for uniformity and 
comparability across different images. 
 
1. RESIZING 
Images are resized to a fixed dimension, typically 256×256 
pixels, to ensure uniformity in the input data. 
Let the original image dimensions be (h,w), where h is the 
height and www is the width. The resizing operation is 
represented as Eq. (8) [27]: 

 
𝐼3{$5-A+59}6C((,*(D = 	𝐼 6{𝑥E}{ℎ} × ℎ3{"5F}6, {𝑦E}{𝑤} × 𝑤3{"5F}67 

(8) 
 
where, (x′,y′) are the coordinates in the resized image. 
hnew=256 and wnew=256 are the new height and width, 
respectively. 
 
2. CROPPING AND PADDING 
Cropping and padding are essential preprocessing steps in 
image analysis to focus on specific regions of interest (ROI) 
and ensure uniform image dimensions. Cropping isolates the 
relevant area, such as the lung region in medical imaging, by 
selecting a specific bounding box within the image. Padding is 
then applied to adjust the dimensions of the cropped image to 
fit the required input size for further processing or model input. 
This ensures that all images have a consistent size, which is 
crucial for effective training and evaluation in machine learning 
models. 
If the ROI is defined by the bounding box with top-left corner 
and bottom-right corner (x2, y2), the cropped image Icrop(x,y) is 
given by Eq. (9) [28]: 
 
𝐼3{G$#H}6((,*) = 	𝐼(𝑥I + 	𝑥, 𝑦I + 	𝑦)	{	𝑓𝑜𝑟	}𝑥I ≤ 𝑥	 ≤ 𝑥0, 𝑦I ≤

𝑦	 ≤ 𝑦0 (9) 
 
C. RESNET 50 ARCHITECTURE DESIGN 
ResNet50 is a deep convolutional neural network designed to 
address the problem of vanishing gradients in deep networks 
through the introduction of residual connections. The 
architecture consists of a total of 50 layers, including 
convolutional layers, batch normalization layers, ReLU 
activations, and residual connections. 
 
1. INPUT LAYER 
The ResNet50 architecture represents a sophisticated approach 
to deep convolutional neural networks (CNNs), leveraging 
residual learning to enhance the performance of very deep 
networks. The architecture begins with an initial convolutional 
layer, followed by a series of residual blocks arranged in four 
stages, each designed to capture increasingly complex features 
from the input data. The architecture is concluded with global 
average pooling and a fully connected layer for classification. 
The input to ResNet50 is an image of dimensions 224×224×3 
(Height × Width × Channels), where the channels are set to 3 to 
accommodate RGB color images. The network starts with a 7x7 
convolutional layer that applies 64 filters with a stride of 2, 
effectively reducing the spatial dimensions of the input while 
increasing the depth of the feature maps. This is followed by 
batch normalization, which normalizes the activations of the 
previous layer to stabilize and accelerate the training process. A 
ReLU (Rectified Linear Unit) activation function introduces 
non-linearity to the model, enhancing its capability to learn 
complex patterns. Subsequently, a 3x3 max pooling operation 
with a stride of 2 further reduces the spatial dimensions, 
ensuring that the network is able to focus on the most salient 
features. 

The core of ResNet50 consists of residual blocks organized 
into four stages. Each stage is characterized by a specific 
number of residual blocks and filters, facilitating the extraction 
of hierarchical features at varying levels of abstraction. In Stage 
1 (Conv2_x), the network contains three residual blocks, each 
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with 64 filters. Each block within this stage is structured with a 
sequence of convolutional layers: a 1x1 convolutional layer that 
reduces dimensionality, followed by a 3x3 convolutional layer 
for feature extraction, and another 1x1 convolutional layer that 
restores dimensionality. The output of each block is combined 
with the input through a shortcut connection, allowing the 
network to learn residual mappings and easing the optimization 
process. 

Stage 2 (Conv3_x) extends the complexity by incorporating 
four residual blocks, each with 128 filters. This stage mirrors 
the structure of Stage 1 but with increased filter dimensions to 
capture more nuanced features. Stage 3 (Conv4_x) further 
escalates the depth with six residual blocks, each featuring 256 
filters, making it the most computationally intensive stage. The 
final Stage 4 (Conv5_x) includes three residual blocks with 512 
filters, enhancing the network's capacity to capture intricate 
patterns and details. 
A distinguishing feature of ResNet50 is its use of the bottleneck 
architecture within each residual block. This design involves a 
series of three convolutional layers: a 1x1 convolution to reduce 
the number of channels, a 3x3 convolution for actual feature 
extraction, and another 1x1 convolution to restore the original 
number of channels. This structure significantly reduces 
computational cost and the number of parameters, making the 
network more efficient while maintaining its representational 
power. 

 
FIGURE 2. ResNet 50 Architecture Diagram 

 
At the end of the network, the feature maps generated by the 

final residual block are subjected to global average pooling 
(GAP). This operation aggregates spatial information by 
averaging the values across the entire feature map, resulting in 
a 1-dimensional vector for each channel. The vector is then 
processed by a fully connected layer, where each neuron 
corresponds to a class in the classification task. For instance, in 

a scenario with 1000 classes, the fully connected layer would 
comprise 1000 neurons. Finally, the output is passed through a 
SoftMax activation function, converting the raw scores into 
probabilities that sum up to 1, thereby providing a probabilistic 
classification of the input image. 

 
D. TRAINING PROCEDURE 
The dataset is split into training (80%), validation (10%), and 
test (10%) sets. Training involves: 
Optimizer: The Adam optimizer is used with an initial learning 
rate of 0.001, reduced by a factor of 0.1 every ten epochs. A 
batch size of 16 is used to balance memory usage and 
convergence speed. 
Epochs: The model is trained for 20 epochs with early stopping 
based on validation loss to prevent overfitting. Transfer 
learning is applied, starting with weights pre-trained on a large 
medical imaging dataset to leverage learned features and 
improve model performance. 
 
E. PERFORMANCE EVALUATION 
To evaluate the performance of the ResNet50 model, we use 
several metrics beyond just accuracy. For medical imaging 
tasks, accuracy alone is not sufficient. To provide a 
comprehensive assessment, we include additional evaluation 
criteria in the form of a confusion matrix (TABLE 2). This 
matrix offers comparative insights between the model's 
classification results and the actual classifications. The 
confusion matrix includes four key terms: true positive (TP), 
true negative (TN), false positive (FP), and false negative (FN) 
[29]. 

TABLE 2 
Confusion Matrix 

True Label 
Predicted 

Benign 
Cases 

Predicted 
Normal 
Cases 

Predicted 
Malignant 

Cases 

Benign Cases 25 0 2 

Normal Cases 0 125 0 

Malignant 
Cases 0 3 120 

 
The performance metrics used to evaluate the ResNet50 model 
provide a comprehensive view of its effectiveness in classifying 
lung nodules. With a total of 270 true positives (TP), 3 false 
negatives (FN), 2 false positives (FP), and 540 true negatives 
(TN), the accuracy of the model is calculated as 85.7%, 
demonstrating its high capability to correctly classify cases. 
Sensitivity, reflecting the model's ability to identify true 
positive cases, is impressive at 98.9%, while precision, 
indicating the accuracy of positive predictions, is 99.3%. The 
balanced F1-score, which combines both precision and 
sensitivity, stands at 99.1%, underlining the model's reliability. 
These metrics highlight the robustness of ResNet50 in medical 
image classification, offering a nuanced understanding of its 
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performance beyond just accuracy. The high precision and 
sensitivity suggest that the model is highly efficient at 
distinguishing between positive and negative cases with 
minimal errors. 
 
VI. RESULTS  
In this section, we analyse the performance of several deep 
learning models—ResNet50, CNN, EfficientNetB1, Inception 
V3, and Multi-Layer Perceptron (MLP)—using key evaluation 
metrics such as accuracy, sensitivity, precision, F1-score, and 
confusion matrices. Among these models, ResNet50 
consistently demonstrates superior performance, exhibiting 
stable and high accuracy with minimal fluctuations (FIGURE 
4). This reliability in classification, reflected in both accuracy 
and loss metrics, showcases its robustness in learning and 
generalizing from lung CT images. In contrast, the CNN model, 
though showing an upward trend in accuracy, suffers from 
greater variability, indicating a potential struggle in handling 
complex features (FIGURE 3). Similarly, EfficientNetB1, 
while improving over epochs, is less consistent than ResNet50, 
possibly due to its sensitivity to hyperparameters and the 
complexity of feature extraction. 

 
FIGURE 3. Accuracy Comparison Graph 

 

 
FIGURE 4. Loss Comparison Graph 

 
When assessing confusion matrices, ResNet50 again 

outperforms, with high true positive and true negative rates 

across all classes, and low false positives and false negatives, 
indicating strong proficiency in distinguishing lung nodules. 
Other models like CNN and EfficientNetB1 perform well but 
show occasional misclassifications, while Inception V3 and 
MLP exhibit more variability, with the latter model showing the 
least stable performance. In terms of loss metrics, ResNet50 
achieves the lowest training and validation loss, further 
emphasizing its effectiveness in learning. CNN displays 
moderate loss values, while both EfficientNetB1 and Inception 
V3 have higher loss values, suggesting some challenges in 
learning efficiency and convergence. MLP, with the highest loss 
values, highlights difficulties in handling the complexities of 
the data, underscoring the limitations of non-convolutional 
architectures in medical image classification tasks (FIGURE 4). 

In terms of accuracy, sensitivity, precision, F1-score, and 
loss metrics, the outcomes demonstrate that ResNet50 
outperforms the other models. It is the most reliable architecture 
for classifying lung cancer among the models that were 
evaluated because of its stability, high accuracy, lower loss 
values, and efficient confusion matrix performance. 
EfficientNetB1 and Inception V3 have promising outcomes, but 
their performance is less consistent than that of CNN and MLP 
(TABLE 3). 

 
VII. DISCUSSIONS 
The outcomes of this study indicate that ResNet50 outperforms 
the other models in terms of accuracy, sensitivity, precision, F1-
score, and loss metrics. ResNet50 demonstrated superior 
performance with high accuracy and lower loss values, making 
it the most reliable architecture for classifying lung cancer 
among the models evaluated. This consistent performance 
suggests that ResNet50 is well-suited for this application due to 
its ability to maintain stability across various metrics and 
handle the complexities of lung cancer classification 
effectively. 

While the results for EfficientNetB1 and Inception V3 are 
promising, they exhibit greater variability in their performance. 
This inconsistency could be attributed to EfficientNetB1's 
sensitivity to hyperparameters and Inception V3's challenges in 
adapting to data variations. These models may perform well 
under certain conditions, but their overall reliability is less 
consistent than that of ResNet50, highlighting the need for 
further refinement and optimization for specific tasks. 

The CNN model generally performs well but shows 
significant variability in accuracy and higher false positive (FP) 
and false negative (FN) rates. This suggests that while CNNs 
can yield good results, they may struggle with stability and 
accuracy, particularly in handling more complex or varied 
datasets. The lower performance of CNNs, compared to 
ResNet50, underscores the importance of deep learning 
architectures that can effectively capture intricate features in 
medical imaging. 
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TABLE 3.  
THE RESULTS OF OUR PROPOSED ARCHITECTURE 

Model Accuracy (%) Loss Sensitivity (%) Precision (%) F1-Score (%) 
ResNet50 
CNN 
EfficientNetB1 
Inception V3 
Mutli-Layer Perception 

98.1 % 
89.2%  
45.4 % 
70.9 % 
45.5 % 

0.06 
0.30 
0.96 
0.76 
0.96 

96.7 % 
66.4 % 
33.3 % 
52.4 % 
33.3 % 

98.6 % 
60.3 % 
15.1 % 
47.2 % 
15.1 % 

97.6 % 
63.1 % 
20.8 % 
49.6% 
20.8 % 
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The MLP model exhibits the least stable performance, 
characterized by higher loss values and significant fluctuations 
in accuracy. The limited capacity of MLPs to capture intricate 
features likely contributes to their lower performance compared 
to convolutional models. This finding reinforces the notion that 
for tasks involving complex data, such as medical image 
classification, models capable of learning spatial hierarchies 
and patterns, like ResNet50, are more effective. 

Despite the robust findings, this study has several 
limitations. The dataset used for model training and evaluation 
might not encompass the full diversity of lung cancer 
presentations, potentially limiting the generalizability of the 
results. Additionally, the models were tested on a relatively 
small dataset, which may not fully represent the range of 
clinical scenarios encountered in real-world settings. Future 
studies should consider using larger, more diverse datasets to 
validate these findings further. Another limitation is the lack of 
exploration into the interpretability of the models. While 
ResNet50 shows the best performance, understanding how it 
makes decisions could provide valuable insights for clinical 
applications and help build trust among medical professionals. 
Future research should focus on enhancing the interpretability 
of these models to ensure their adoption in clinical practice. 

The findings of this study have significant implications for 
clinical practice and future research. ResNet50's superior 
performance suggests it could be a valuable tool for assisting 
radiologists in the early detection and classification of lung 
cancer, potentially improving patient outcomes through more 
accurate diagnoses. However, the variability observed in the 
performance of other models indicates that further refinement 
and optimization are needed to ensure their reliability and 
effectiveness in clinical settings. Future research should focus 
on exploring ensemble methods or hybrid models that combine 
the strengths of multiple architectures to improve overall 
performance and stability. Additionally, investigating the 
impact of different data augmentation techniques, 
preprocessing steps, and training strategies could provide 
deeper insights into optimizing model performance for lung 
cancer classification. 

 
VIII. CONCLUSION 
The aim of this study was to evaluate and compare the 
performance of various deep learning models for lung cancer 
classification, focusing particularly on ResNet50. Our findings 
demonstrate that ResNet50 outperforms other models across all 
key metrics. Specifically, ResNet50 achieved an accuracy of 
98.1%, significantly higher than CNN (89.2%), EfficientNetB1 
(45.4%), Inception V3 (70.9%), and Multi-Layer Perceptron 
(45.5%). In terms of loss, ResNet50 recorded the lowest value 
at 0.06, compared to CNN’s 0.30, EfficientNetB1’s 0.96, 
Inception V3’s 0.76, and Multi-Layer Perceptron’s 0.96. 
Additionally, ResNet50 led in sensitivity with 96.7%, precision 
with 98.6%, and F1-score with 97.6%, further emphasizing its 
effectiveness in classifying lung cancer. Despite the promising 
results of EfficientNetB1 and Inception V3, and the potential of 
CNNs in certain contexts, these models require further 
optimization to reach the performance stability and accuracy of 
ResNet50. Future work should aim to refine these models and 
explore hybrid approaches that integrate the strengths of 
multiple architectures. Enhancing model generalizability and 

performance by using larger and more diverse datasets will also 
be crucial for improving clinical applications and outcomes. 
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