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ABSTRACT Understanding blood plays a crucial role in obtaining information for monitoring health conditions and diagnosis 

of hematologic diseases such as acute myeloid leukemia. It is characterized by irregular expansion of immature white blood 

cells called blast cells in the blood and bone marrow. To diagnose acute myeloid leukemia, a sample of bone marrow is 

necessary to be examined under a microscope through bone marrow examination. As for minimizing human subjectivity and 

automating medical screening, this study performed image classification for detecting blast cells in leukocytes from 

microscopic images. The main objective of this study is to examine an established convolution neural network structure in 

detecting blast cells. We compared well-known architecture such as ResNet, ResNeXt, and EfficientNetV2. The model’s 

performance assessment was done by two evaluation levels which are at a macro level and per class level. The experiment 

results show ResNet architecture with 18 layers (ResNet 18) outperforms the remaining models at both levels. Furthermore, as 

the architecture utilizes residual learning, ResNet and ResNeXt models converge faster than EfficientNetV2 at the training 

phase. In addition, ResNet architecture with 50 layers (ResNet 50) outperforms the remaining models specifically at blast cell 

identification in case of medical screening. However, EfficientNetV2 shows a promising potential at a macro level to classify 

leukocytes in general while maintaining a competitive performance to ResNet and ResNeXt in the same numbers of parameter. 

Therefore, this study concludes that residual learning shows an outstanding performance in a few numbers of iteration. In 

addition, a model with shallow layer is the best model for classifying leukocyte in general and a model with deeper layer is the 

best model for detecting blast cells in leukocyte specifically. 

INDEX TERMS acute myeloid leukemia, blast cells, convolution neural network, image classification 

I. INTRODUCTION 

In medical investigation, blood cells are observed under 

microscopic examination [1]. Within certain conditions, such 

as diagnosing leukemia, blood cells are also observed through 

bone marrow examination. Leukemia is a hematologic disease 

where immature leukocyte called blast cells proliferate 

irregularly, filling up the bone marrow, and preventing the 

production of erythrocytes and thrombocytes [2], [3]. 

Depending on cell proliferation rate, leukemia can be 

categorized as acute leukemia (more aggressive) and chronic 

leukemia (slow growing). In addition, affected leukocyte cells 

also classify leukemia as myeloid leukemia (myeloid cells) 

and lymphocytic leukemia (lymphocyte cells) [4], [5]. Acute 

myeloid leukemia refers to an aggressive leukemia which 

affected myeloid cells such as myeloblast cells which are 

immature precursors of leukocyte that will mature into 

granulocyte and monocyte [6] - [8]. As a clonal and malignant 

disease of hematopoietic tissues, acute myeloid leukemia 

characterized by accumulation of irregular blast cells (mainly 

in the bone marrow) and impaired production of normal blood 

cells [7], [8]. According to the World Health Organization 

(WHO), a criterion for indicating an acute myeloid leukemia 

patient is 20% or more of leukemic blast cells either in blood 

peripheral or bone marrow [9], [10]. In general, this 

hematologic disease commonly occurs in elderly people with 

symptoms including anemia, fever, ulcer of mucous 
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membranes, and granulocytic insufficiency. In fact, a study of 

leukemia incidence trends on a global scale conducted by 

Dong et al. (2020) [11] showed that the incident rate of acute 

myeloid leukemia with age was increased exponentially. 

Furthermore, the 5-years survival rate of acute myeloid 

leukemia in younger patients is between 40% - 50%, while in 

older patients (age > 60) between 20% - 30% [12], [13]. 

Therefore, the diagnosis of acute myeloid leukemia plays a 

crucial part in order to give a treatment as soon as possible. 

When a diagnosis of acute myeloid leukemia is suspected, 

bone marrow examination is conducted to observe a sample of 

myeloid blast cells in bone marrow [7]. However, blood cells 

observation is labor intensive and time consuming that leads 

to inefficiency [1]. Furthermore, subjectivity of physicians and 

experts sometimes leads to discrepancies of diagnosis [14], 

[15]. In that case, machine learning algorithm becomes a 

logical option for solving those problems as machine learning 

can learn a pattern from observational data by itself during 

training phase while adapt without explicit instruction [16]. In 

addition, a machine learning based on artificial neural network 

algorithm which mimicking human brain and encouraging 

pattern recognition to extracting high levels of features of data 

[17], [18]. 

Automated blood cells classification using machine 

learning algorithms has been conducted for several years. 

Generally, blood marrow images were classified to distinguish 

blood cells. In case of leukemia, lymphoblastic leukemia has 

received more attention than myeloid case due to its less 

diversity of cytomorphology [19]. As for myeloid leukemia 

case, the early study that utilize deep learning in case of acute 

myeloid leukemia were conducted using ResNeXt architecture 

[20], [21]. Those studies claim the dataset used on their 

respective study were the largest expert-annotated single 

blood cell images dataset prior to publication time. There are 

also studies focused on further diagnosing which classify 

leukemic cells subtypes using support vector machine [22], 

[23]. As deep learning requires a large number of data while 

at some blood cells there are limited numbers of images, study 

for generating synthetic blood cells image progressed to 

enhance performance of deep learning model on specific 

blood class scheme [24] - [26]. While generating synthetic 

image possibly enhance deep learning performance, it also led 

to another problem such as bias to some class due to imbalance 

dataset problem and unsolved the limited data problem due to 

the large number of samples that required for learn to 

generating synthetic images. An alternative method through 

transfer learning also taken into consideration when blood 

cells images are considered low [27] - [29]. However, the 

limited number of myeloid leukemia cytomorphology dataset 

requires another task domain to utilize transfer learning which 

is sometimes the selected learned domain lacking justification. 

In addition, those previous studies focused on image 

classification tasks without taking into account the deep 

learning architecture. Therefore, a fundamental understanding 

of suitable deep learning structures has become a crucial part 

of progressing myeloid blast cells recognition research. While 

the previous research focused on implementing deep learning 

architecture on their respective study case, we suspect that 

examining the suitability of deep learning structures in blast 

cells recognition will be useful for a basis to designing a high-

performance model on this study case. 

Here, we are conducting a comparative study for 

convolution neural networks based deep learning in case of 

blast cells detection in leukocytes. The main objective of this 

study is to analyze the best structures for blast cells detection 

in blood cells classification. Mainly, our contribution is 

evaluating a well-known convolution neural network structure 

as basis to develop a high-performance model for detecting 

myeloid blast cells. 

II. MATERIAL AND METHODS 

As a comparative study, the experiment was conducted under 

the same dataset, environment, and hyperparameter settings. 

Related studies have their own classification scheme [30] 

while focusing on small number of classes to build a high-

performance model [31] - [33]. Hence, this study focuses on 

leukocyte classification in addition to detecting blast cells as a 

screening for acute myeloid leukemia diagnosis. 

A. BONE MARROW DATASET 

Microscopic images of blood cells in this study are secondary 

data which provided by MLL Munich Leukemia Laboratory 

[21] through The Cancer Imaging Archive [34]. Bone marrow 

cytologic images were obtained from 961 patients diagnosed 

with a variety of hematological diseases between 2011 and 

2013. Bone marrow smears are digitized with Zeiss Axio 

Imager Z2 and annotated into 21 classes. However, this study 

was using the subset of those datasets which contain 12 classes 

of leukocyte including blast cells. From the annotated region, 

the image observed were cropped into 250 × 250-pixel images 

as shown in FIGURE 1. 

 

FIGURE 1. Sample image of bone marrow cytologic datasets 
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FIGURE 2. CNN based architecture. (a) Residual block of ResNet model, (b) Aggregation of residual block with cardinality of ResNeXt model, (c) MBConv 

block and Fused-MBConv block of EfficientNetV2 

B. CNN BASED ARCHITECTURE 

The convolution neural network (CNN) has a well-known 

reputation in image recognition amongst various domain 

knowledge. Within CNN based architecture models, research 

mainly led to model performance and parameter efficiency. 

Thus, we choose ResNet as representations of the best 

performance and EfficentNetV2 as representations of the best 

efficient CNN model. In addition, we also used ResNeXt as a 

benchmark which also used in previous study [20], [21]. 

ResNet architecture was built to tackle degradation 

problems which occurred in very deep models. ResNet 

introduced residual learning as shown in FIGURE 2(a) which 

explicitly let the layers approximate the residual function so 

that a very deep model can avoid degradation in training phase 

[35]. When ResNet was compared to architecture without 

residual learning with the same number of layers, ResNet 

outperformed those architectures and converged earlier. 

As a variant of ResNet, ResNeXt also uses a residual 

learning within this architecture. As shown in FIGURE 2(b), 

ResNeXt is utilized an aggregation in residual block named 

cardinality [36]. This architecture shows a small improvement 

in performance compared to ResNet. In addition, this 

improvement comes from the increment of cardinality rather 

than number of layers which shows the effectivity of 

cardinality. 

EfficientNetV2 was built as a parameter efficient oriented 

model. However, this model shows a good performance in 

addition to parameter efficiency and claimed in having a better 

performance compared to vision transformer [37]. The 

efficiency of this model comes from depthwise convolution, 

as shown in FIGURE 2(c), which makes the number of 

parameters and FLOPs more efficient. However, depthwise 

convolution has a drawback in learning phase at shallow layer 

which lead to MBConv block learn ineffectively. Therefore, 

this architecture utilizes a Fused-MBConv layer in order to 

speed up the learning time. Consequently, Fused-MBConv 

layer slightly increased the number of parameters and FLOPs. 

Hence, MBConv and Fused-MBConv are combined using 

Neural Architecture Search (NAS) to optimize this 

architecture which can learn faster at shallow layer and 

parameters efficiently. 

C. EXPERIMENT SETTINGS 

In this study, the experiment was conducted using PyTorch 

framework under DGX-1 environment. The available GPU in 

this setup is Nvidia V100. The models we compared are 

ResNet 18, ResNet 50, ResNeXt 50 with 32 cardinalities, 

EfficientNetV2S, and EfficientNetV2M. In order to provide a 

fair comparison, we conducted the inference of those models 

under the same environment. For the dataset, we randomly 

split into 3 (three) parts as training set (60%), validation set 

(15%), and test set (25%). In addition, we conducted data 

augmentation such as flipping and rotating to provide variety 

to dataset. Furthermore, we considered random over sampling 

to increase the number of minority class while maximize the 

variety of majority class [38] as the dataset was imbalanced as 

shown in FIGURE 3. 

FIGURE 3. Microscopic image sample distribution for each class 

 

Although hyperparameters also take a crucial part in the 

learning process, some restrictions were unavoidable to reach 

a trustworthy comparison. Therefore, the hyperparameters 

which are used in this study are the same setup for every 

model. The hyperparameters setup for this study is shown in 

TABLE 1. We constrain the learning iteration to 100 epoch 
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and applied early stopping on top of using validation set to 

avoid overfitting. In addition, the same batch size settings 

applied as restriction to compare the learning time of each 

model. 

 

TABLE 1. 

Hyperparameter settings for restricted comparison 

Epoch 100 

Batch size 32 

Learning rate 10−3  

Optimizer Adam 

Loss function Cross Entropy 

 

Cross entropy loss function is commonly used for 

supervised classification [39], [40]. It coincides with the 

logistic loss applied to the outputs of a neural network, when 

the SoftMax is used. Assume dataset is defined as a set of 𝑁 

samples of label 𝑦 that correspond to input 𝑥 from data 

distribution 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)} with number of class 

C. Let ℒ as loss function with 𝑤 as weight, cross entropy loss 

can be notated as in (1). 

ℒ = − ∑ ∑ 𝑤𝑐 𝑙𝑜𝑔
𝑒𝑥𝑝(𝑥𝑛,𝑐)

∑ 𝑒𝑥𝑝(𝑥𝑛,𝑖)𝐶
𝑖=1

𝑦𝑛,𝑐
𝐶
𝑐=1

𝑁
𝑛=1  (1) 

As in optimizer, we consider adaptive moment estimation 

(Adam) which robust and well-suited to a wide range of non-

convex optimization problems [41]. Furthermore, Adam 

demonstrated that empirical convergence meets the 

expectations of theoretical analysis. In mathematical notation, 

consider 𝜃𝑡−1 as model parameter that computed using 

gradient descent become 𝜃𝑡 at timestep t with learning rate 𝛼. 

Therefore, optimization at first step can be written as in (2). 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝛻𝜃ℒ(𝑓(𝜃)) (2) 

Since Adam utilize momentum to accelerate gradient 

descent, it requires decay rate to estimate the momentum. Let 

𝛽1 and 𝛽2 as decay rate, 𝑚𝑡 as update biased first moment 

estimation at timestep t, and 𝑣𝑡 as update biased second 

moment estimation at timestep t. Consider those parameter, 

computed bias corrected first moment 𝑚�̂� and computed bias 

corrected second moment 𝑣�̂� can be written as follows: 

𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝛻𝜃𝑓(𝜃𝑡−1) (3) 

𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(𝛻𝜃𝑓(𝜃𝑡−1))
2
 (4) 

𝑚�̂� ← 𝑚𝑡 (1 − 𝛽1
𝑡)⁄  (5) 

𝑣�̂� ← 𝑣𝑡 (1 − 𝛽2
𝑡)⁄  (6) 

Intuitively, Adam adapting to the gradient descent after every 

iteration so that it remains controlled and unbiased throughout 

the process. Instead of normal weight parameters, Adam take 

the momentum in addition of constant 𝜖 to avoid division by 

zero. When it put in together, adam can be written as in (7). 

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼𝑚�̂� (𝑣�̂� + 𝜖)⁄  (7) 

D. PERFORMANCE EVALUATIONS 

Performance assessment in this study was conducted in two 

levels evaluation which are macro level and micro level. 

Metric evaluations that are used at macro level are accuracy, 

precision, recall, and F1 score. As N number of evaluation of 

predictive model 𝑓 for image 𝑥 and label 𝑦 from evaluation 

sample distribution 𝑆 = {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)}, those metrics 

can be mathematically notated as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ 𝑓(𝑥) = 𝑦𝑁

𝑖=1  (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ℙ(𝑦 = +|𝑓(𝑥) = +) (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 = ℙ(𝑓(𝑥) = +|𝑦 = +)  (10) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (11) 

At some point, accuracy metric can be affected by type I 

and type II statistical error. In statistical hypothesis testing, a 

type I error is the mistaken rejection of a null hypothesis that 

is actually true (overestimate). On the other hand, a type II 

error is the failure to reject a null hypothesis that is actually 

false (underestimate). Therefore, precision and recall metric 

come to play in considering those error respectively. In 

addition, F1 score metric considers both errors at the same 

time under assumption that both errors are weighted equally. 

In micro level, the performance assessment was evaluating 

for every class and specifically in detecting blast cells. Metric 

evaluations that are used in this level are F1 score, false 

detection rate (FDR), and false negative rate (FNR). As we 

consider the model was learning to be a semi assisted medical 

diagnostic tool, the usage of FDR and FNR plays a crucial role 

to evaluate type I and type II error respectively. In 

mathematical equation, FDR and FNR can be written as 

follows: 

𝐹𝐷𝑅 = 1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  (12) 

𝐹𝑁𝑅 = 1 − 𝑅𝑒𝑐𝑎𝑙𝑙  (13) 

III. RESULT  

There are two things that become concern in this comparative 

study which are training phase comparison and model 

performance comparison. Training phase comparison takes a 

part in comparing how fast model reach convergence which 

consider the number of iterations for each architecture. On the 

other hand, model performance comparison evaluating each 

architecture in classifying the unseen data of leukocyte 

images. 

A. TRAINING PHASE COMPARISON 

Comparing how models reach convergence in the learning 

phase plays a part in selecting model which the most 

timesaving and effectively utilizing computational resource. 

As shown in FIGURE 4, ResNet and ResNeXt architecture 

which utilize residual block reach convergence faster than 

EfficientNetV2 architecture. Furthermore, ResNet 18, ResNet 

50, and ResNeXt 50 reach convergence within 10 – 25  
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TABLE 2. 

Model evaluation at macro level 

Model Parameter Accuracy↑ Precision↑ Recall↑ F1 Score↑ 

ResNet 18 11182668 78.11% 71.94% 75.00% 73.03% 

ResNet 50 23532620 75.81% 68.13% 70.87% 68.94% 

ResNeXt 50 23004492 75.95% 67.37% 72.64% 68.96% 

EfficientNetV2S 20192860 77.69% 70.05% 73.77% 71.40% 

EfficientNetV2M 52873728 75.84% 67.91% 71.86% 68.69% 

 

FIGURE 4. Graph of loss function during learning stage 

 

iterations. It shows that ResNet and ResNeXt architecture can 

utilize resources better than EfficientNetV2. However, ResNet 

and ResNeXt architecture tend to overfit easily rather than 

EfficientNetV2. As a result, this comparison study shows that 

in this study case there is a tradeoff between convergence rate 

and overfitting potential. 

B. MODEL PERFORMANCE COMPARISON 

At macro level, ResNet 18 outperforms the remaining models 

in every metric as shown in TABLE 2. This result is consistent 

with degradation problem where the performance of deep 

learning decreases as the number of layers increases even 

though the analysis model complexity also increases. This also 

shows that residual learning has been utilized ineffectively in 

this study case. At the same time, aggregation of ResNeXt 

architecture barely outperformed ResNet architecture when 

those architectures using the same number of layers as shown 

in ResNet 50 and ResNeXt 50. However, the number of 

parameters in ResNeXt 50 model have less 50k (fifty 

thousand) parameters than ResNet 50 model so that in 

implementation perspectives ResNeXt outperformed ResNet 

architecture in resource utilization. 

Although the predictive performance of EfficientNetV2 

was underperformed to ResNet and ResNeXt, there are things 

that should be taken into consideration. First, EfficientNetV2 

tends to avoid overfitting at the learning phase as shown in 

FIGURE 4. Second, predictive performance of 

EfficientNetV2 as represented by EfficientNetV2S 

outperformed ResNet 50 and ResNeXt 50 when compared to 

the model with the same number of parameters. These results 

raise an assumption that parameters of EfficientNetV2 can 

recognizing a general pattern efficiently. It is supported by 

predictive performance of EfficientNetV2M which has twice 

the number of parameters as ResNet 50 and ResNeXt 50 while 

maintaining similar performance. However, further study 

requires to authenticate this assumption. 

Performance evaluation at micro level using F1 score shows 

that ResNet 18 predictive performance in 7 out 12 class are the 

highest as in TABLE 3. Therefore, ResNet 18 also 

outperformed the remaining models in micro level. However, 

if the comparison specified in ResNet 50, ResNeXt 50, and 

EfficienrNetV2S which have similar number of parameters, 

EfficientNetV2S predictive performance outperforms the 

remaining model in 8 out 12 class. In addition, comparison 

between ResNet 50, ResNeXt 50, and EfficientNetV2M based 

on assumption in macro level evaluation shows that ResNeXt 

50 outperforms the remaining models in 7 out 12 class. The 

most interesting part of those comparisons is every model has 

a class which outperforms the other. This result was matching 

the No-Free-Lunch theorem which states that machine 

learning model cannot be used in general task but only at a 

specific task [16], [42]. In this study, the specific task is to semi 

assisted doctor to diagnose acute myeloid leukemia so that the 

evaluation should be focused on detecting blast cells. As the 

result, ResNet 18 outperforms the remaining model in this 

study case as shown in TABLE 3. 

As F1 score metric simplify precision and recall metric, the 

result of TABLE 3 is less convincing when in medical 

diagnosis adhere to principles of zero mistakes for patient 

safety. Therefore, type I and type II errors become a crucial 

part of detecting blast cells. In addition, FDR and FNR metrics 

play a role in evaluating those errors in number as shown in 

TABLE 4. Considered in doctor point of view, the most 

beneficial model for semi assisted medical diagnosis is the 

model with low type II error which prevents a patient to 

diagnose as healthy due to underestimate. On contrary, models 

with a low statistical testing error in both type I  
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TABLE 3. 

Model evaluation with F1 score metric at micro level 

Cell ResNet 18 ResNet 50 ResNeXt 50 EfficientNetV2S EfficientNetV2M 

Basophil 55.00% 44.61% 42.57% 43.75% 36.86% 

Blast 79.45% 77.42% 73.28% 78.35% 75.85% 

Eosinophil 95.09% 94.11% 95.16% 92.58% 92.46% 

Hairy Cell 56.25% 42.17% 37.13% 53.18% 46.15% 

Lymphocyte 84.88% 83.16% 81.75% 85.90% 84.13% 

Metamyelocyte 48.85% 45.66% 51.14% 52.41% 47.81% 

Monocyte 66.84% 62.24% 65.70% 64.39% 61.42% 

Myelocyte 66.04% 63.33% 64.13% 64.41% 63.87% 

Band Neutrophil 73.16% 72.31% 74.69% 73.34% 71.83% 

Segmented Neutrophil 84.19% 80.74% 83.31% 84.94% 82.64% 

Plasma Cell 90.55% 87.48% 84.24% 88.67% 87.29% 

Promyelocyte 76.01% 74.09% 74.45% 74.91% 74.00% 

and type II error is an ideal, but high type I error also tolerable 

due understanding of model’s overestimation beforehand led 

to further medical examination. In that case, ResNet 50 model 

is the best model specific in detecting blast cells due to the 

least value in FNR metric. Moreover, ResNeXt 50 and 

EfficientNetV2M which having high underestimation in 

predicting blast cells be avoided when FDR metric 

overlooked. However, those models are the best model in the 

case of studying blast cells of patient as the least value in FDR 

metric. 

TABLE 4. 

Blast cells detection error 

Model FDR↓ FNR↓ 

ResNet 18 21.20% 19.88% 

ResNet 50 25.81% 19.04% 

ResNeXt 50 18.46% 33.47% 

EfficientNetV2S 23.57% 19.64% 

EfficientNetV2M 15.51% 31.20% 

 

During comparison at micro level, contradiction arise when 

in F1 score metric result shows degradation of performance in 

architecture as the number of parameters or layers increases 

while in FNR metric shows ResNet 50 outperforms ResNet 18 

in detecting blast cells. Furthermore, there are correlations 

between class with low performance and the number of 

samples for that class. It is specific in metamyelocyte, 

basophil, and hairy cell which have a bad performance and 

least number of samples as shown in TABLE 3 and FIGURE 

3 respectively. Those facts led to the fact that the imbalance 

dataset is the main problem. Moreover, solving imbalance 

dataset problem using random over sampling also led minority 

class to overfit which make it even worse. Conversely, random 

under sampling can avoid minority class to overfit at the 

sacrifice of reducing observed variety in majority sample. 

Semi supervised learning can be an alternative to avoid 

minority class to overfit while sustain observed variety in 

majority sample [25], [26]. However, semi supervised learning 

has its own problem that requires a number of samples to 

classify unlabeled data or generate a synthetic image. Thus, 

the lack of dataset as a main problem is still unsolved and 

unpredictable even though model predictive performance 

enhanced. 

IV. DISCUSSION 

As for this study case, we consider CNN based architecture to 

be the most suitable deep learning model. The architectures 

that used in this study limited to the well-known best 

performance and most efficient on top of benchmark from 

previous study. Although this study covered mainstream 

convolutional blocks such as residual block, aggregation 

block, and MBConv block as shown in FIGURE 2, there are 

several modifications and CNN based architectures that are 

out of this comparative study’s scope. Although another deep 

learning variant such as Vision Transformer in transformer-

based architecture shows a competitive performance to CNN 

based architecture, there are several problems in this 

architecture which are lack inductive bias, high computational 

resource, and more data intensive than CNN based 

architecture [43]. Furthermore, EfficientNetV2 architecture 

also outperforms Vision Transformer in ImageNet scenario 

[37]. A fused CNN and transformer also suggested as a 

solution for those problems [44]. However, as this fused 

architecture only slightly leverages those problems, we 

considered CNN based architectures are more desirable rather 

than transformer-based or fused CNN-transformer at this 

point. Experiment results justify our perspective which the 

number of samples in this study case still a problem. 

A limited number of microscopic images in this study case 

are related to a rate of new case of acute myeloid leukemia is 

estimated to 23.1% of total leukemia case worldwide in 2017 

[11]. In addition, several blood cells are low in number so that 

imbalanced data was unavoidable. Big data or large-scale 

participative observations worldwide can be considered to 

tackle this unbalanced and lacking data problem. However, 

those problems cannot be solved immediately. Therefore, an 

alternative such as transfer learning is more practical at this 

point which exploit a similar domain into this study case [45]. 

Moreover, automated blood cells image recognition in broader 
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and more specific subtype can be considered through meta 

learning which involve training on a variety of task to learn 

generalize knowledge [46], [47]. In this case, a specific 

subtype cells for diagnosing acute myeloid leukemia subtype 

can also be recognized. 

V. CONCLUSION 

As the main objective of this study is to examine an established 

convolution neural network structure in detecting blast cells 

for semi-assisted diagnose of acute myeloid leukemia, this 

study presents a comparison of a well-known CNN based 

architectures in image recognition. The experiment shows that 

ResNet outperforms the selected architecture in this study 

especially ResNet 18 for classify leukocyte in macro and 

micro level. The contradiction arises when ResNet 50 

outperforms the remaining model in specific study case using 

FNR metric. In addition, predictive performance on every 

metric for each model has not been able to reach automatic 

leukocyte recognition for medical purposes when considered 

a zero-mistake principle. According to our findings, we 

suspect an architecture combining a residual block and 

MBConv block can reach an early convergence point with 

good performance while avoiding overfitting. We also found 

that imbalanced dataset and lacking data sample become the 

significant problem to lead model underperformed at some 

class. Therefore, CNN based architectures are preferable than 

transformer-based architectures in this study case. 

Although fully automated models are unreachable in this 

study, we conclude that semi-automated models are still 

tolerable at this point. Regardless of imbalanced dataset 

problems, CNN already shows its performance in several 

domain tasks. However, a comparative study between CNN 

based architectures and transformer-based architectures 

requires when imbalanced dataset and lacking data sample can 

be solved. As for the future work, we suggest that transfer 

learning and meta-learning can be considered for blast cells 

recognition to build a fully automated model under 

imbalanced dataset and lacking data sample problem. 
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