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ABSTRACT Identifying synergistic drug combinations in cancer treatment is challenging due to the complex molecular 
circuitry of cancer and the exponentially increasing number of drugs. Therefore, computational approaches for predicting drug 
synergy are crucial in guiding experimental efforts toward finding rational combination therapies. This research selects the 
molecular features of cancer cells with a diffusion network-based approach. Additionally, a model is developed using non-
linear regression algorithms, namely Random Forest, Extremely Randomized Tree, and XGBoost, to predict the synergy score 
of drug combinations against the selected cancer cell features. The data used are 118 drug combination screening data and 85 
cancer cell molecules provided by AstraZeneca-Sanger DREAM Challenge. The prediction results indicate that as the data size 
increases, the correlation value of the model improves, leading to better prediction accuracy.  The influential feature analysis 
revealed that the three most influential mutation features in the AKT_1 and PIK3C drug combination model were ATP8B3, 
ERBB2, and RNF8. In the drug combination model BCL2_BCL2L1 and FGFR, the three most influential mutation features 
were BACH1, ODF2, and BFAR. In the MAP2K_1 and PIK3C drug combination model, TP53, IL12p40*, and SOX4 were 
the most influential features. All of these features have a connection between the mutation features and cell lines, aligning with 
the therapeutic targets of the three-drug combinations, which were the focus of this study. 
 
INDEX TERMS cancer, drug combination, drug synergy, network diffusion kernel, non-linear regression 

I. INTRODUCTION 
Cancer is a disease caused by uncontrolled cell growth [1]. 
According to [1], several cancer treatments are available for 
patients, including surgery, chemotherapy, radiation therapy, 
drug therapy, and molecular biological therapy. However, 
most cancer patients experience resistance, rendering the 
drugs ineffective in killing cancer cells [2]. Giving a single 
drug to cancer patients is ineffective and often leads to 
resistance [3]. In contrast, drug combinations offer higher 
effectiveness by overcoming resistance. The effectiveness of 
drug combinations is divided into three categories: positive 
(synergistic), neutral, and negative (antagonist). Synergistic 
drug combinations occur when drug A can kill 40% of cancer 
cells, and drug B can kill 10% of cancer cells, resulting in a 
combined effectiveness of 80% against cancer cells. The 
drug combination is considered neutral if drug A combined 
with drug B does not increase in killing cancer cells. Drug 
combinations are categorized as antagonists if drugs A and 
B are combined, decreasing the killing of cancer cells. 
Identifying synergistic drug combinations in cancer 
treatment is challenging due to the complex molecular 
circuits of cancer [4]. Moreover, the preparation of drug 
combinations requires pre-clinical stages to assess potential 

synergies between drug pairs. Considering the exponentially 
growing number of drug combinations, it is impractical to 
screen all these combinations through direct 
experimentation. Hence, computational approaches play a 
crucial role in predicting drug synergy and guiding 
experimental efforts toward finding effective combination 
therapies [5]. 
In this context, the computational approach uses 
mathematics, statistics, and computer science to study the 
mechanisms and behavior of complex systems through 
computer simulations. By using a computational approach, 
the search space for large datasets of drug combinations can 
be reduced. This approach enables the selection of optimal 
drug combinations for experimental testing based on 
predefined priority criteria.  
Several approaches have been developed to model 
synergistic drug combinations using chemical, biological, 
and molecular data from cancer cells [6], although with 
limited translation modeling capabilities. The main 
challenge in developing such models lies in the availability 
of sufficiently large and diverse public data to train 
computational approaches [7]. As a step towards addressing 
this challenge, in 2015, the AstraZeneca Dream Challenge 
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released experimental data comprising 11.5 thousand drug 
combinations, measuring cell viability in 118 drugs and 85 
cancer cell lines. This dataset also includes comprehensive 
monotherapy drug responses for each drug and cell line. In 
addition to limited public data, another challenge in 
developing computational models for drug combinations in 
cancer lies in the dependence on the feature selection of 
cancer cell molecular data [8]. Feature selection involves 
identifying and selecting data to address specific goals or 
problems. Several approaches can be used to select or extract 
molecular features of cancer cells, including network or 
graph-based methods [9]. 
Previous research focused on selecting molecular features of 
cancer cells using a network-based method, as conducted by 
[10]. They investigated relevant features or paths in breast 
and ovarian cancer data from the Cancer Genome Atlas. 
They used a network diffusion approach that calculates the 
similarity scores of neighboring nodes in the constructed 
network. The study demonstrated that the network diffusion 
approach performs well in identifying relevant features in 
cancer data. 
The researchers employed machine learning techniques to 
examine the relevance of feature selection using the 
proposed approach [11]. They developed models to predict 
the effects of drug synergy based on selected biological 
information features from  O'Neil's cancer data [4], utilizing 
linear and non-linear regression algorithms. The result 
showed that the non-linear regression algorithm better 
predicted drug synergy in cancer patients using genomic 
information or features. 

This study proposes a method by which we can perform 
feature selection to identify relevant molecular features used 
to predict drug synergy in combinations of cancer drugs. The 
approach involves network diffusion of gene mutations in 
cancer cells and the analysis of gene interactions in cancer 
cells. Model prediction was conducted to assess the model's 
accuracy in predicting the synergy of drug combinations 
based on the selected gene mutations' features. The 
prediction model is developed using three non-linear 
algorithms: Extremely Randomized Trees (ERT), Random 
Forest (RF), and XGBoost. The data used includes drug and 
molecular cancer cell screening data provided by the 
AstraZeneca-Sanger DREAM Challenge. This research 
provides insights into influential molecular features of 
cancer cells in predicting drug synergy effects. Additionally, 
the study yields a predictive model with reasonable accuracy 
for specific drug combinations from the AstraZeneca 
DREAM Challenge’s data. 

This research contributes to identifying relevant 
molecular features in cancer cells that influence the synergy 
score of cancer drug combinations. In practical terms, the 
findings of this study could aid in the early identification of 
drugs for newly diagnosed cancer patients whose cancer cell 
structures resemble those analyzed in this research. 
Additionally, this research only focuses on the selection of 
molecular features in cancer cells. The features of drug 
compounds were not considered to produce a predictive 
model for the synergy score of cancer drug combinations. 
 
II. MATERIAL AND METHODS 

A. RESEARCH FLOW 
The research was conducted through several stages: data 
collection, data pre-processing, selection of molecular 
features of cancer cells, modeling, analysis, and model 
evaluation using the Pearson correlation. During the data 
collection stage, mutation, leaderboard, training, and testing 
data were downloaded from the AstraZeneca website. 
Subsequently, interaction data of cancer cell genes were 
downloaded from the Atlas of Cancer Signaling Network 
website. In the next stage, the data is pre-processed by 
reducing, transforming, and integrating. The third stage 
involved the selection of the molecular features in cancer 
cells, starting with the construction of the network. 
Following the network construction, diffusion was 
performed on the network. Additionally, feature selection 
was conducted using univariate feature selection and LASSO 
techniques. The next step is to create a model using the 
Random Forest, ERT, and XGBoost algorithms. Finally, the 
model was evaluated and analyzed using Pearson's 
correlation. The stages can be seen in FIGURE 1. 

 
FIGURE 1. Research flow 

B. DATA 
The data was obtained from the AstraZeneca Dream 
Challenge and Atlas of Cancer Signaling Network (ACSN) 
websites. In this research, we integrated monotherapy data 
from the leaderboard, training, testing datasets, mutation 
data, and a gene-gene interaction network to predict drug 
synergy. A total of 11,500 synergy scores involving 118 drug 
combinations and 85 cell lines were experimentally assessed 
and provided by the AstraZeneca Dream Challenge [8]. 
However, this study focused only on three-drug 
combinations to examine the relevant features of each 
specific combination. The cancer cell lines used in this study 
originated from various sources, including breast (n=34), 
lung (n=22), urinary tract (n=14), gastrointestinal tract 
(n=12), male genital system (n=2), and lymphoma (n=1). 
AstraZeneca generated the mutation dataset using whole 
exome sequencing for all 85 cell lines, resulting in 20,521 
gene mutations. The gene-gene interaction network was 
interconnected with cancer-related signaling and metabolic 
maps provided by ACSN [12]. TABLE 1 presents various 
data collected from these two websites. 
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TABLE 1 
Variety of data 

Data Name Website Attribute Explanation 

Leaderboard  AstraZeneca 14 Data containing cell name, 
*name of drug, combination 
of drugs, the value of the 
effectiveness of a single drug 
against cells, and the value 
of drug effectiveness when 
combined. 

Training 
 

AstraZeneca 14 Data that contains the same 
attributes as leaderboard 
data. 

Testing AstraZeneca 14 Data that contains the same 
attributes as leaderboard 
data. 

Mutation AstraZeneca 32 Data containing mutated 
genes in cancer cells. 

Data between 
cancer cell 
genes. 
 

ACSN 3 Data containing genes 
relevant to cancer. 

*The drug name attribute does not contain the name of the drug but the name  
of the protein or inhibitor. 

C. PRE-PROCESS DATA 
Pre-process data consists of three processes: reduction, 
integration, and transformation. Data reduction involves 
removing unimportant data and selecting essential data. The 
data reduction was applied to the leaderboard, mutation, 
training, and testing data. Data integration involves 
combining multiple datasets into one. In this study, data 
integration was performed on the mutation data. Data 
transformation involves changing the format of the data. The 
data transformation process was applied to the cancer cell 
gene data. 

The first pre-processing step was carried out on the 
leaderboard and training data. The attributes in the 
leaderboard and training data were reduced to only five: 
CELL_LINE, COMPOUND_A, COMPOUND_B, Einf_A, 
and Einf_B. Next, the data was transformed to generate drug-
specific data, including CELL_LINE and Einf attributes. The 
Einf values in the new data were given a threshold to classify 
the drug response to cells, using the median Einf value as a 
threshold. The threshold value used was 40.51634. If the Einf 
value exceeds this threshold, the drug response is classified 
as synergistic (1); otherwise, it is classified as an antagonist 
(0). The pre-processing results on the leaderboard and 
training data yielded monotherapy data per drug, including 
the cell name, Einf value, and response value. Only data with 
more than ten cells were selected from the 69 monotherapy 
drug data. Ten drugs met this criterion and had a response 
value of 0 or 1: AKT, BCL2_BCL2L1, FGFR, MAP2K_1, 
MTOR_1, PIK3C, PIK3CB_PIK3CD, AKT_1, ATR_4, and 
IAP. 

The second pre-processing step was applied to the 
mutation data. The 32 attributes in the mutation data were 
reduced to three attributes: cell_line_name, Gene.name, and 
FATHMM.prediction. Data cleaning was performed on the 
FATHMM.prediction attribute by removing data with the 
value “PASSENGER/OTHER”. A value of 
"PASSENGER/OTHER" indicates that the somatic gene in 
the cancer cell does not contribute to cancer development. 

Next, a further reduction was made by selecting the cell_line 
name and Gene.name attributes. The transformation process 
was then applied to produce an adjacency matrix measuring 
85 cells x 20,521 genes. The third pre-processing step 
involved transforming the data between cancer cell genes 
into an adjacency matrix measuring 2748 rows x 2748 
columns. 

The fourth preprocessing step was performed on the 
leaderboard, training, and testing data, following the same 
process as the first pre-processing step to obtain 
monotherapy data. However, the monotherapy data was 
based on drug combinations instead of single drugs for this 
fourth step. Only the drug combination data with the highest 
number of cancer cells in the leaderboard, training, and 
testing data were processed in the subsequent stages. From 
this pre-processing, three-drug combinations were selected: 
AKT_1.PIK3C, BCL2_BCL2L1.FGFR, and 
MAP2K_1.PIK3C. 
Furthermore, integration was conducted between the pre-
processed mutation data and the pre-processed result dataset 
per drug in the training, leaderboard, and testing data. This 
integration was performed for the selected monotherapy 
drugs based on the pre-processing results from the 
leaderboard, training, and testing data. The five drugs were 
AKT_1, BCL2_BCL2L1, FGFR, MAP2K_1, and PIK3C. 

D. SELECTION OF MOLECULAR FEATURES OF 
CANCER CELLS 
At this stage, feature selection is done on the cancer cell 
genes. First, a 0 and 1 adjacency matrix was built on cancer 
cell gene data and gene mutation data. The two adjacency 
matrices are then combined. A value of 0 means no mutation 
or the gene is normal, and a value of 1 indicates a mutation 
or abnormal gene. Then do the diffusion using the Laplacian 
Exponential Diffusion (LED) method with the formula: 
 

         𝐾 = exp(−	𝛼𝐿),                                         (1) 
 
         𝐿 = 𝐷 − 𝐴,                                                             (2) 
 
         𝐷(𝑖, 𝑖) = 	∑ 𝐴(𝑖, 𝑗)2

345 ,                                (3) 

A is the network adjacency matrix, D is A's diagonal degree 
association matrix, L is the Laplacian network matrix, and α 
is the independent parameter. This diffusion results in 
matrices with a value of 0, around which a value of 1 also 
has a value (no longer has a value of zero). Then the 
normalization process is carried out on the diffusion result 
dataset to change the numeric value of the diffusion result 
into the same scale. But not distort the differences in the 
range of values. Furthermore, feature selection is made with 
univariate feature selection to reduce the molecular features 
with numbers in the tens of thousands. Next, feature 
selection is performed using the LASSO algorithm to select 
the best features from the reduced features using univariate 
feature selection. FIGURE 2 is a visualization of the feature 
selection that was done.  

After obtaining the gene features of the cells for each 
drug with LASSO, the datasets were combined according to 
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the selected drug combinations. These combined datasets 
will become training data for the modeling process. 

E. MODELING 
Modeling is done using ERT, RF, and XGBoost algorithms. 
These algorithms are non-linear regression algorithms. The 
comparison of the three algorithms is that the RF algorithm 
used the bootstrap method to build a decision tree. The 
decision trees are built into all collected data in the ERT 
algorithm. While in the XGBoost algorithm, the decision 
trees are taken by combining several weak trees into a robust 
model that produces a strong prediction. 

F. MODEL ANALYSIS AND EVALUATION 
In this stage, an evaluation of the model is performed to see 
the ability of the model to predict synergy scores from the 
given drug combinations. Pearson correlation is used as a 
based accuracy prediction measure in every drug 
combination that is calculated with the formula below: 
 

𝑟 = ∑(787̅)(:8:;)
<∑(787̅)=<∑(:8:;)=

	 ,                                      (4) 
 
where x is a predicted sample, y is an observed sample, �̅� is 
the average of x, and 𝑦; is the average of y. Four results can 
be obtained in the evaluation model using the Pearson 
correlation, as shown in TABLE 2. 
 

TABLE 2 
Pearson correlation evaluation matrix 

Prediction results Explanation 

Positive If x increases, y also increases. If <0.50, 
weak correlation; if >0.50, strong 
correlation. 

Negative 
 

If x increases, y decreases. If <-0.50 weak 
correlation, if >-0.50 strong correlation. 

Zero There is no connection between variables x 
and y. 

NaN One of the variables has a constant value, so 
the correlation coefficient is not defined. 

 
III. RESULTS 

A. SELECTION OF MOLECULAR FEATURES OF 
CANCER CELLS 
Feature selection was conducted on the selected drug 
monotherapy from the pre-processed data. TABLE 3 
presents each drug’s selected gene mutation cell features 
obtained through lasso selection.  
  

TABLE 3 
Features selected from the selection using LASSO for each drug 

Drugs Selected Features of Gene Mutation Cells 

AKT_1 RNF8; PDGFRB; MET; OCLN; ATP8B3; 
ERBB21P_ENST00000284037; FAM1358; 
TNXB. 

BCL2_BCL2L1 
 

IDAAM1; IGSF11; GNB2L1; PLEKHM2; 
NMNAT2_ENST00000294868. 

FGFR STAB1; BFAR; BACH1; ODF2; 
ALG13_ENST00000394780; 
FBXW7_ENST00000281708; 
c10orf68_ENST00000375025; 
Q8N0W1_HUMAN. 

MAP2K_1 CAMKK2; THBS2; POLQ; ITGB2; NEURL; 
BAIAP2; OGG1. 

PIK3C TP53; SOX4; BCL3; ITGB1; IL1RAP; 
MIZ1*; NADE*; IL12p40*. 

 
Based on the literature study, the average selected features 
from the five drugs exhibit a close relationship with cancer. 
However, there is one feature, Q8N0W1_HUMAN, on the 
FGFR drug, which has no direct association with cancer. 

 
FIGURE 2. Selection of molecular features of cancer cells 
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According to [13], it is one of the uncharacterized fragments 
in human GPCRs (G protein-coupled receptors). For 
instance, RNF8 is one of the selected features. As stated in 
[14], AKT regulation mediated by the RNF8 gene can 
activate AKT signaling in lung cancer. 

B. MODELING 
Prior to modeling, the pre-processed dataset and feature 
selection results are merged. The combined data serves as the 
training dataset for the three-drug combinations, 
incorporating the selected features and the monotherapy 
dataset. Following the data combination process, the features 
obtained consist of 22 features in the AKT_1 and PIK3C 
drug combination dataset, 19 features in the BCL2_BCL2L1 
and FGFR drug combination dataset, and 21 features in the 
MAP2K_1 and PIK3C drug combination dataset. 
Subsequently, each dataset is split into training data (70%) 
and test data (30%). The training data is used to train the 
constructed model, while the test data is used to validate the 
model that has been constructed. Modeling was carried out 
on the three-drug combination datasets using three 
algorithms: Extremely Randomized Tree (ERT), Random 
Forest (RF), and XGBoost. The modeling is implemented 
using the sci-kit-learn library [15] in Python, utilizing the 
RandomForestRegressor module for RF, the XGBRegressor 
module for XGBoost, and the ExtraTreesRegressor module 
for ERT. 
 

TABLE 4 
Parameter configuration of the RF algorithm for each drug combination 

model 
Parameter Selected 

value in 
drug 

combina-
tion 1 

Selected 
value in 

drug 
combina-

tion 2 

Selected 
value in 

drug 
combina-

tion 3 

Search space 

n_estimators 
 
 
 
max_depth 
 
 
 
max_features 
 
criterion 
min_samples

_split 
min_impurity

_decrease 
bootstrap 

400 
 
 
 
10 
 
 
 
log2 
 
mae 
3 

 
0.1 

 
false 

600 
 
 
 
40 
 
 
 
log2 
 
mae 
6 
 
0.5 
 
true 

1500 
 
 
 
15 
 
 
 
sqrt 
 
mae 
9 
 
0.1 
 
true 

[200, 400, 
600, 800, 
1000, 1500, 
2000] 
[5, 10, 15, 
20, 25, 30, 
35, 40, 45, 
50, 55] 
[auto, sqrt, 
log2] 
[mse, mae] 
[2, 3, 4, 5, 6, 
7, 8, 9, 10] 
[0.0, 0.05, 
0.1, 0.5] 
[true, false] 

 
The three algorithms are then compared to determine which 
performs best. The first modeling round was performed on 
the AKT_1 and PIK3C drug combination datasets. The 
second round was conducted on the BCL2_BCL2L1 and 
FGFR drug combination datasets. The third modeling was 
done on the MAP2K_1 and PIK3C drug combination 
datasets. Parameter tuning is accomplished using the 
GridSearchCV library in Python by providing a range of 
values for each parameter to determine the optimal parameter 
for each model. Subsequently, each model is trained using 
the hyperparameters obtained from the parameter search 

with GridSearchCV. The tuning parameter values for each 
algorithm, derived from the GridSearchCV results for the 
three-drug combination dataset models, can be seen in 
TABLE 4, TABLE 5, and TABLE 6. 

TABLE 5 
Parameter configuration of the ERT algorithm for each drug 

combination model 
Parameter Selected 

value in 
drug 

combina-
tion 1 

Selected 
value in 

drug 
combina-

tion 2 

Selected 
value in 

drug 
combina-

tion 3 

Search 
space 

n_estimators 
 
 
 
max_depth 
 
 
 
max_features 
 
criterion 
min_samples

_split 
 
min_impurity

_decrease 
 bootstrap 

800 
 
 
 

45 
 
 
 
auto 
 
mse 
4 

 
 
0.05 

 
true 

200 
 
 
 
20 
 
 
 
sqrt 
 
mae 
10 
 
 
0.5 
 
true 

200 
 
 
 
10 
 
 
 
log2 
 
mae 
6 
 
 
0.5 
 
false 

[200, 400, 
600, 800, 
1000, 1500, 
2000] 
[5, 10, 15, 
20, 25, 30, 
35, 40, 45, 
50, 55] 
[auto, sqrt, 
log2] 
[mse, mae] 
[2, 3, 4, 5, 
6, 7, 8, 9, 
10] 
[0.0, 0.05, 
0.1, 0.5] 
[true, false] 

 
 
 

TABLE 6 
Parameter configuration of the XGBoost algorithm for each drug 

combination model 
Parameter Selected 

value in 
drug 

combina-
tion 1 

Selected 
value in 

drug 
combina-

tion 2 

Selected 
value in 

drug 
combina-

tion 3 

Search 
space 

n_estimat
ors 
 
 
 
max_dept
h 
 
min_child
_weight 
xgb_tree_
method 
 
xgb_eta 
 
xgb_gam
ma 
xgb_objec
tive 

1800 
 
 
 
 
18 
 
 
10 

 
gpu_hist 
 

 
0.1 

 
0 
  
reg:square
derror 

1800 
 
 
 
 
18 
 
 
10 

 
 gpu_hist 
 

 
 0.1 

 
 0 
  
reg:squared
error 

800 
 
 
 
 
14 
 
 
 4 
 
 auto 
 
 
0.30000000
0000004 
 0 
 
reg:squared
error 

[200, 400, 
600, 800, 
1000, 1200, 
1400, 1600, 
1800, 2000] 
[2, 4, 6, 8, 10, 
12, 14, 16, 
18, 20] 
[1, 2, 3, 4, 5, 
6, 7, 8, 9, 10] 
[auto, exact, 
approx, hist, 
gpu_hist] 
[0.1, 0.2, 0.3, 
0.4, 0.5, 0.6] 
[0, 0.1, 0.2, 
0.3, 0.4, 0.5] 
[reg: 
squarederror, 
reg:squaredlo
gerror] 

 
 
 
C. MODEL ANALYSIS AND EVALUATION 
After modeling, the model is analyzed and evaluated using 
the Pearson correlation method. According to [16], Pearson 
correlation is suitable for analyzing normally distributed 
data. In the AstraZeneca dream challenge dataset, the 
synergy score attributes for each data provided by the 
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challenge are normally distributed. Because of that, the 
Pearson correlation is used as a suitable measure for 
predicting accuracy in each drug combination [8]. This 
correlation method compares the correlation between the 
predicted synergy score and the observed synergy score. The 
Pearson module in the SciPy Python library is utilized to 
calculate the Pearson correlation value in this study. 
FIGURE 3 illustrates that the synergy score attribute in this 
study follows a typical distribution. TABLE 7 presents the 
correlation values obtained from the three models built using 
the three algorithms.  

 
 

     

 
FIGURE 3. The normal distribution of attribute synergy scores on the 
three datasets 
 

 
TABLE 7 

Pearson correlation values with three models with three algorithms 
Drug 

Combination 
Number of 

cells 
RF ERT  XGBoost 

AKT_1 dan 
PIK3C 

29 0,045 -0,411  NaN 

BCL2_BC
L2L1 dan 
FGFR 

30 0,570 0,130  NaN 

MAP2K_1 
dan PIK3C 

42 0,830 0,662  0,932 

 
TABLE 7 demonstrates that the RF algorithm has the highest 
correlation value compared to the ERT and XGBoost 

algorithms for the model on the AKT_1 and PIK3C drug 
combination dataset with 29 cells, as well as the 
BCL2_BCL2L1 and FGFR drug combination dataset with 
30 cells. Conversely, for the model on the combined dataset 
of MAP2K_1 and PIK3C drugs with a cell count of 42, the 
XGBoost algorithm achieves the best accuracy, with a 
Pearson correlation value of 0.932, which is 0.1 higher than 
the Pearson correlation value obtained with the RF 
algorithm.  

Furthermore, in the XGBoost algorithm, the Pearson 
correlation value for the AKT_1 and PIK3C drug 
combination dataset and the BCL2_BCL2L1 and FGFR drug 
combination dataset is NaN (undefined) due to the prediction 
of synergy scores on the AKT_1 and PIK3C drug 
combination test data and the BCL2_BCL2L1 and FGFR 
drug combination test data using the XGBoost algorithm 
resulting in a constant value. In the AKT_1 and PIK3C drug 
combination test data, each data row is predicted to have a 
value of 36.974. In the test data for the BCL2_BCL2L1 and 
FGFR drug combination, each data row is predicted to have 
a value of -13.192. In the Pearson correlation formula 
(Equation 4), there is a division by zero when subtracting the 
average of the predicted value (y) from each value. This 
division by zero results in NaN values for the Pearson 
correlation in the first and second drug combinations models 
using the XGBoost algorithm.  

Additionally, the ERT algorithm produces a negative 
Pearson correlation value in the AKT_1 and PIK3C drug 
combination model due to an inverse relationship between 
the actual values (x) and the predicted results (y), resulting 
in a negative correlation coefficient. 
 
IV. DISCUSSION 
 
A. PREDICTION MODEL ANALYSIS 
The results of the evaluation model on AKT_1 and PIK3C 
aslo BCL2_BCL2L1 and FGFR align with the research 
conducted by [11], which predicted the synergy score of drug 
combinations by comparing the accuracy of models built 
with RF and ERT. When the entire training dataset of 16,575 
samples was used, ERT showed a higher correlation value 
than RF, with values of 0.738 and 0.731, respectively. 
However, when only 780 data samples were used, RF had a 
better correlation value than ERT, with values of 0.827 and  
0.821, respectively. 

A study by [17] on 28 datasets from the UCI repository 
[18] compared the accuracy of the random forest, XGboost, 
and gradient boosting algorithms. The results showed that 
XGboost has good accuracy on data with fewer features or 
columns compared to the number of instances or rows. This 
aligns with the results obtained from the correlation value of 
the MAP2K_1 and PIK3C drug combination model, where 
the number of cells is exceeded the number of features, 
resulting in a better correlation value than RF and ERT.  
Additionally, TABLE 7 indicates that as the data size 
increases, the correlation value in the model also increases, 
indicating improved prediction accuracy. This result is 
consistent with the finding of [19], which states that larger 
data sizes lead to enhanced model performance. According 

AKT_1.PIK3C 

BCL2_BCL2L1.FGFR 

MAP2K_1.PIK3C 
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to [19], this improvement suggests that the built model can 
be generalized to include more cells, thereby improving 
predictive performance. Furthermore, in the AstraZeneca 
dream challenge, one of the teams who achieved the best 
performance in predicting the synergy of drug combinations 
was the DMIS team 
(https://www.synapse.org/#!Synapse:syn5816530). For the 
drug combination BCL2_BCL2L1 and FGFR, the DMIS 
team obtained a Pearson correlation value of 0.162. This 
value is smaller when compared to the value obtained in this 
study, measuring 0.570. 
 
B. INFLUENTIAL FEATURES ANALYSIS WITH 

RANDOM FOREST ALGORITHM 
The important features of each drug combination can be 
obtained by using the feature_importance function in the 
sklearn module in Python. FIGURE 4 illustrates the 
sequence of important features for each drug combination 
model. As shown in FIGURE 4, the three most influential 
features in the AKT_1 and PIK3C drug combination model 
are ATP8B3, ERBB2, and RNF8. According to the 
proteinatlas.org website, ATP8B3, ERBB2, and RNF8 have 
gene expression in all cell lines of the training and test data, 
except for the M-14 and EVSA-T cell lines, where all cell 
lines exhibit expression of these three influential features 
that are relevant to breast cancer. Research by [20] found that 
direct inhibition of AKT_1 may represent a therapeutic 
strategy for breast cancer. In addition, [21] found that PIK3C 
inhibition could be a therapeutic strategy for breast cancer 
after adjunctive therapy. 

 

 

  
FIGURE 4. Important features of the three drug combination models 

 
 

In the BCL2_BCL2L1 and FGFR drug combination 
model, the three most influential features of cell mutations 
are BACH1, ODF2, and BFAR. According to the 
proteinatlas.org website, these three genes are expressed in 
all training and test cell lines, except for the MFM-223 and 
M14 cell lines in the test data. All cell lines expressing these 
three influential features are relevant to breast, bladder, and 
lung cancer. Research by [22] indicates that the BCL2 family 
is an important clinical prognostic marker for breast cancer. 
Research by [23] demonstrated that targeting BCL2L1 could 
be a plausible therapeutic strategy in bladder cancer patients. 
[24] targeted the BCL2 family as a therapeutic strategy in 
lung cancer patients. Research by [25] showed that FGFR 
can be a therapeutic target in breast cancer. Research by [26] 
stated that FGFR could pose challenges in the clinical 
practice of bladder cancer treatment. Research by [27] 
highlighted that FGFR could inhibit personalized treatment 
in lung cancer patients. 

The three most influential cell mutation features in the 
MAP2K_1 and PIK3C drug combination model are TP53, 
IL12p40*, and SOX4. According to the proteinatlas.org 
website, these three genes are expressed in the training and 
test data cell lines, except for the C32 and COLO-205 cell 
lines in the training data, and RKO and MFM-223 in the test 
data. The cell lines expressing these three influential features 
are relevant to breast, bladder, and colon cancer. Research by 
[28] demonstrated that using MAP2K_1 inhibitors combined 
with radiation therapy significantly reduced cell migration 
capacity in breast cancer cells. Research by [29] 
hypothesized that the knockdown of MAP2K_1 via miRNA-
1826 could be a new therapeutic approach for bladder cancer. 
Research by [30] targeted MAP2K_1 as an inhibitor for the 
treatment of colon cancer. Research by [31] found that 
PIK3C could be a therapeutic target for bladder cancer cells. 
Research by [32] provided clinical trial data of PIK3C as a 
target for drug therapy in various cancers, including breast, 
colon, and bladder. Based on the above analysis, it can be 
concluded that there is a relationship between the influential 
cell mutation features and the cell lines with the therapeutic 
targets of the three-drug combinations, which are the focus 
of this study. 
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Furthermore, the results of this research imply that 
computational approaches for predicting drug synergy are 
crucial in guiding experimental efforts toward finding 
rational combination therapies in cancer treatment. This 
study demonstrates the potential of a network-based 
molecular features selection approach to predict drug 
synergy in cancer cells. Furthermore, selecting influential 
mutation features in specific drug combination models 
provides insights into the therapeutic targets and potential 
mechanisms underlying the observed synergistic effects. 
This information can inform further investigations and drug 
development strategies. The comparison of three regression 
algorithms (Random Forest, Extremely Randomized Tree, 
and XGBoost) highlights the importance of algorithm 
selection in predicting drug synergy. The Random Forest 
algorithm generally performs well in the drug combination 
datasets analyzed in this study, but the XGBoost algorithm 
shows superior accuracy in some instances. The results of 
this study align with previous research findings, validating 
the effectiveness of the selected algorithms and highlighting 
the potential of the network-based molecular features 
selection approach in predicting drug synergy. These 
findings contribute to the growing knowledge of 
computational drug synergy prediction. Finally, identifying 
influential features in each drug combination model offers 
potential biomarkers or targets for further investigation. 
These features, which show a connection between mutation 
features and cell lines, align with the therapeutic targets of 
the drug combinations studied. Further studies can explore 
the functional roles of these features and their potential in 
personalized medicine approaches. Additionally, the 
weakness of this study lies in its limited focus on cancer cell 
interaction genes, which resulted in a restricted search space 
limited to gene interactions within cancer cells. 
 
IV. CONCLUSION 
This study successfully developed a network diffusion-based 
approach for selecting molecular features of cancer cells. 
The data used includes drug and molecular cancer cell 
screening data provided by the AstraZeneca-Sanger 
DREAM Challenge. A prediction model for the synergy 
score of drug combinations against cancer cells was also 
successfully developed. The development of the model is 
based on the selected mutational features of cancer cells 
using diffusion network. In the drug combination models of 
AKT_1 and PIK3C with the RF, ERT, and XGBoost 
algorithms, the Pearson correlation values were found to be 
0.045, -0.411, and NaN, respectively. In the BCL2_BCL2L1 
and FGFR drug combination model, the Pearson correlation 
results were RF (0.570), ERT (0.130), and XGBoost (NaN). 
In the MAP2K_1 and PIK3C drug combination model, 
Pearson correlation values were RF (0.830), ERT (0.662), 
and XGBoost (0.932). These results indicate that as the data 
size increases, the correlation value of the model improves, 
leading to better prediction accuracy. This improvement 
suggests that the developed model can be generalized to 
include more cells and enhance prediction performance. The 
feature selection using network diffusion, univariate feature 
selection, and LASSO yielded relevant gene mutation 
features related to cancer. The RF algorithm’s influential 

feature analysis revealed that the three most influential 
mutation features in the AKT_1 and PIK3C drug 
combination model were ATP8B3, ERBB2, and RNF8. In 
the drug combination model BCL2_BCL2L1 and FGFR, the 
three most influential mutation features were BACH1, 
ODF2, and BFAR. In the MAP2K_1 and PIK3C drug 
combination model, TP53, IL12p40*, and SOX4 were the 
most influential features. All of these features have a 
connection between the mutation features and cell lines, 
aligning with the therapeutic targets of the three-drug 
combinations, which were the focus of this study. Future 
research can expand the dataset to improve the predictive 
value of drug combination synergy scores. Additionally, 
other types of data, such as copy number variant (CNV) data, 
methylation, and gene expression, can be incorporated as 
features for selection. Various feature selection techniques 
and model training approaches can be explored to enhance 
algorithm performance.  
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