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ABSTRACT The aim of our study was to identify risk factors associated with mortality in patients with Ebola virus disease 
using binary logistic regression and linear discriminant analysis, to assess the predictive power of these two methods and to 
compare the performance of the models in terms of coefficients and predictions. Our study was a double-blind randomized 
controlled trial (observational study) conducted in 2018 during the 10th Ebola outbreak in eastern DRC. The study included 
363 patients divided into two treatment arms, including 182 patients treated with MAB114 (Ebanga) and 181 patients treated 
with REGENERON (REGN-EB3). After an in-depth analysis of the data, the two statistical analysis methods selected the 
same set of variables (risk factors). For binary logistic regression we obtained: viral load 0.58 (0.5-0.67), creatinine 1.98 (1.58-
0.67) and aspartate aminotransferase 0.99 (0.9-1); as for linear discriminant analysis, we have viral load (0.88), creatinine 
(0.94) and aspartate aminotransferase (0.78). We also find almost the same results when different prediction probabilities are 
evaluated. Logistic regression predicted a 36.5% mortality rate and linear discriminant analysis predicted a 38.8% mortality 
rate. With regard to the predictive power of the two models, we used the AUC (area under the curve) score and obtained a 
score of 0.935 for binary logistic regression and 0.6932 for linear discriminant analysis. According to the evaluation hypothesis, 
the two methods give the same risk factors (viral load (Ctnp), creatinine and alanine aminotransferase (ALT)) with a prediction 
probability of around 93%. 
 
INDEX TERMS Ebola Virus, Ebola Virus Mortality, Linear Discriminant Analysis, Logistic Regression, Risk Factor.

I. INTRODUCTION 
Various predictive statistical methods have been proposed to 
estimate risk factors associated with disease mortality. The 
aim of this study was to identify various risk factors 
associated with mortality in Ebola virus patients using 
binomial logistic regression and linear discriminant analysis 
in a randomized trial. The performance of the models on 
coefficients and predictions was also compared. When the 
10th Ebola epidemic broke out in eastern Democratic 

Republic of Congo in  2018. Logistic regression 
measures the relationship between the occurrence of an event 
(qualitatively explained variables) and the factors that may 
affect it (explanatory variables). The selection of explanatory 
variables to be included in the logistic regression model is 
based on prior knowledge of the disease and the statistical 
association between the variables and the events as measured 
by odds ratios. The regression is based on maximum 
likelihood estimation. Discriminant analysis is both a 
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predictive technique (Linear Discriminant Analysis - LDA) 
and a descriptive technique (Discriminant Factor Analysis - 
DFA).  It is designed to describe and predict the membership 
of an individual to a group (class). A categorical target 
variable from the Explanatory/Descriptive Variables 
collection. Mainly quantitative, but can be qualitative with 
adjustments. Discriminant analysis is based on least squares 
estimation, which corresponds to linear estimation [4], [8] 
[13], [14]. 
This study aims to evaluate the performance of two 
predictive data analysis methods: Linear Discriminant 
Analysis and Binary Logistic Regression.  The authors of 
this study have specifically contributed to: 
a. Study the performance of Linear Discriminant Analysis 

applied to risk factors linked to Ebola virus disease 
mortality; 

b. Study the performance of Binary Logistic Regression on 
risk factors associated with Ebola virus disease mortality; 

c. To compare the performance of Linear Discriminant 
Analysis and Binary Logistic Regression; 

d. Show that we can achieve the same results with the two 
methods of predictive data analysis. 

 
II. METHODS 
A. STUDY POPULATION 
The study was conducted in the provinces of North Kivu, 
South Kivu and Ituri in the Democratic Republic of Congo 
(DRC) during the 10ième Ebola outbreak in 2018.  Our study 
was an observational study (a double-blind randomized 
clinical trial). In August 2018, an Ebola hemorrhagic fever 
(EHF) outbreak began in the provinces of North Kivu, South 
Kivu and Ituri in the Democratic Republic of Congo. This 
was the 10th confirmed Ebola outbreak in the country since 
Ebola was first reported in Zaire in 1976. After the end of the 
outbreak in West Africa, the World Health Organization 
(WHO) launched a series of discussions to advance research 
on Ebola. This included group work focusing on how 
experimental therapies should be evaluated in the context of 
the next Ebola outbreak. These discussions led to a 
consensus that, where possible, the most promising 
experimental treatments should be evaluated in randomized 
controlled trials in the event of a new epidemic. This 
infrastructure facilitated the unity of the international 
community and the leadership of the Democratic Republic of 
Congo in developing and conducting the clinical trials. The 
study compared two molecules: REGENERON and 
MAB114 (Ebanga) as these molecules have been shown to 
be effective in the management of patients [4], [13], [14], 
[15], [16]. The inclusion criteria for the study were a positive 
Ebola test (positive PCR). The study was jointly approved 
by the University of Kinshasa ethics committee and the 
National Institute of Allergy and Infectious Diseases 
(NIAID) review board, and is overseen by an independent 
data and safety monitoring committee. Written informed 
consent was obtained from all patients or their legal 
guardians and for children in accordance with local standards 
and requirements [16]. 

 
B. DATA COLLECTION AND ANALYSIS 

The data used in this study come from the results of a 
randomized, double-blind, controlled clinical trial conducted 
on a sample of 363 patients, including 182 patients with 
MAB114 (Ebanga) and 181 patients with REGENERON 
(REGN-EB3). The data were entered into REDCAP before 
being transferred to IBM SPSS version 21.0 and R version 
4.2.1 for data analysis. The normality conditions of the 
variables were determined using the KOLMOGOROV test. 
The variables were found to be normally distributed (the data 
follow the normal distribution). The data were then classified 
by binary logistic regression and linear discriminant 
analysis. We then determined the risk factors and prediction 
probabilities for both methods.   
 
C. LOGISTIC REGRESSION  

Logistic regression, developed in 1944 by Joseph Berkson 
(American Ph ysicist, Physician and Statistician, born in 
1899 and died in 1982), allows the discrimination of a binary 
or polytomous response variable  (𝐾 ≥ 2 classes) from a 
matrix of  𝑃	explanatory variables  𝑋 = (𝑋!, … , 𝑋")	 The 
data can be a mixture of two different formats: continuous 
and qualitative. The strength of logistic regression lies in the 
form of the link function used (the logit or probit) and which 
allows a sigmoidal form of modelling, including the notion 
of slope influenced by the frequency of observations, in the 
form of weights by sector, when we move from one sector to 
another according to the class described by the response 𝑌 
[1], [7]. 
 
Let 𝑌 a variable with values in {0, 1}	to be explained by 
𝑝	explanatory variables 𝑋 = 21, 𝑋!;…,𝑋&3

'
  

The logistic model proposes a modeling of the law of 𝑌 𝑋⁄ =
𝑥 by a Bernoulli distribution of parameter 𝑝((𝑥) = 𝑃(𝑌 =
1 𝑋⁄ = 𝑥)  as defined in equation (1) such that [1]: 

𝑙𝑜𝑔 &!(*)

!,&!(*)
= 𝛽- + 𝛽!𝑥! +⋯+ 𝛽&𝑥& = 𝑥'𝛽											(1)                                                                                      

Or 𝑙𝑜𝑔𝑖𝑡	𝑝((𝑥) = 𝑥'𝛽, 𝑙𝑜𝑔𝑖𝑡 denoting the bijective and 
derivable function of ]0,1[  
In  ℝ⟼ log	(𝑝 (1 − 𝑝)⁄ ). The equality in can be written, as 
explained in equation (2), such that [1]:  

𝑝((𝑥) = 𝑃((𝑌 = 1 𝑋⁄ = 𝑥) = "#$	('(!		)
*+"#$	('(!		)

               (2)                                                                                            

In a logistic model, we make two (2) choices to define the 
model: 
1. The choice of a law for 𝑌 𝑋⁄ = 𝑥,	here Bernoulli's law 
2. The choice of the 𝑃(𝑌 = 1 𝑋⁄ = 𝑥) by  𝑙𝑜𝑔𝑖𝑡	𝑃((𝑌 =

1 𝑋⁄ = 𝑥) = 𝑥'𝛽			 The function 𝑙𝑜𝑔𝑖𝑡 is bijective. [1], 
[7] [10], [18], [26]. 

The parameters 𝛽. 	𝑗 = 1,… . , 𝐾 − 1	 are estimated by 
maximum likelihood. For an observation (𝑥, 𝑦)is denoted by  
𝑦!, … , 𝑦/ a complete disjunctive coding of 𝑦i.e., 𝑦. = 1 if 
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𝑦	 = 	𝑗, 0 otherwise. The likelihood is written [7], as 
explained in equation (3):  

𝐿(𝑦, 𝛽) = 𝑝(!(𝑥)0* … . . 𝑝(/(𝑥)0, 				                                  
(3)                                                                                                  

The likelihood therefore follows a multinomial distribution 
ℳ(1, 𝑝!(𝑥), … . 𝑝1(𝑥)). This is why this model is also called 
a "polythomous multinomial model". The maximum 
likelihood estimators are again obtained by cancelling the 
partial derivatives with respect to the different parameters of 
the sample likelihood.  

As in the dichotomous case, there are no explicit 
solutions for the estimators and numerical methods are used 
to calculate them. There is no real novelty compared to the 
binary case, the algorithm is simply more delicate to write 
because of the multiplication of the number of parameters. 
The odds ratios do not generally appear in the software 
output for the multinomial model: they must therefore be 
calculated by hand, taking care to take into account the 
particular coding of the qualitative explanatory variables. 
We recall that for an individual x, the odds of an event 𝑌	 =
	𝑗 is equal to the ratio  𝑃(𝑌 = 𝑗 𝑋⁄ = 𝑥)/𝑃(𝑌 ≠ 𝑗 𝑋⁄ = 𝑥). 
In the case of the multinomial model, we define the odds of 
an event 𝑗!		against an event 𝑗2		 by equation (4) [7]: 
𝑜𝑑𝑑𝑠(𝑥, 𝑌 = 𝑗!	𝑣𝑠	𝑌 = 𝑗2) =

"!(34.* 5⁄ 4*)

"!(34.- 5⁄ 4*)
= exp	(	(𝛽.* −

𝛽.-)′𝑥)                                                    (4) 
And for two individuals 𝑥7 and 𝑥7(then the odds ratio is 
defined in equation (5) [7]: 

𝑂𝑅(𝑥7,𝑥7( , 𝑌 = 𝑌 = 𝑗!	𝑣𝑠	𝑌 = 𝑗2) =
"!(34.* 5⁄ 4*.)/"!(34.- 5⁄ 4*.)

"!(34.* 5⁄ 4*.()/"!(34.- 5⁄ 4*.()
 

= exp		((𝛽.* − 𝛽.-)′(𝑥7-𝑥7())        (5) 
Thus, if the two individuals 𝑥7 and 𝑥7( differ by only one unit 
for the variable ℓwe have : 
𝑂𝑅(𝑥7,𝑥7( , 𝑌 = 𝑌 = 𝑗!	𝑣𝑠	𝑌 = 𝑗2) = exp	(𝛽ℓ

.* − 𝛽ℓ
.-).  [1], 

[7], 
D. SPECIFICATION AND INFERENCE TESTING 

The various estimation methods presented above lead to 
asymptotically normal estimators when the number of 
observations tends to infinity. It is therefore easy to use these 
various estimators to construct test procedures, some of 
which will be asymptotically equivalent. We will present 
here the main test procedures based on the maximum 
likelihood estimation method which is the most frequently 
used. The most frequent tests are listed below: 
1) Wald test 
2) Likelihood Ratio Test (LRT) 
3) Test of the score or Lagrange multiplier: LM (Lagrange 

Mulitplier) 

It should be remembered that these three tests are 
asymptotically equivalent, which implies that they can 
contradict each other on small samples. Moreover, since 
their distribution is only asymptotically valid, care should be 
taken when using them on small samples. 

It is also known that the LRT test is the most powerful locally 
and should therefore be preferred a priori. We will only 
consider here the case of a two-way test on a coefficient or 
on a set of coefficients. (This is in order to have confidence 
intervals for the ORs.) [5], [7]. 
 
E. DISCRIMINANT ANALYSIS  

Discriminant Factor Analysis (DFA) or simply Discriminant 
Analysis is a statistical technique that aims to describe, 
explain and predict the membership of predefined groups 
(classes, modalities of the variable to be predicted...) of a set 
of observations (individuals, examples...) from a series of 
predictor variables (descriptors, exogenous variables...).it 
was discovered (Introduced) by Fisher in 1936 There are 
generally two main approaches to Discriminant Analysis 
(depending on the objectives): 

F. DISCRIMINANT ANALYSIS CAN BE A DESCRIPTIVE 
TECHNIQUE.  

This is known as discriminant factor analysis (or descriptive 
discriminant analysis). The objective is to propose a new 
system of representation, latent variables formed from linear 
combinations of the predictor variables, which make it 
possible to discern groups of individuals as far as possible. 
In this sense, it is close to factor analysis because it allows to 
propose a graphical representation in a reduced space, more 
particularly to the principal component analysis calculated 
on the conditional centers of gravity of the clouds of points 
with a particular metric. It is also known as canonical 
discriminant analysis, especially in Anglo-Saxon software. 
 
G. DISCRIMINANT ANALYSIS CAN BE PREDICTIVE.  
In this case, it is a question of constructing a classification 
function (assignment rule, etc.) which makes it possible to 
predict the group to which an individual belongs on the basis 
of the values taken by the predictive variables. In this sense, 
this technique is similar to supervised machine learning 
techniques such as decision trees, neural networks, etc. It is 
based on a probabilistic framework. The best known is 
certainly the multinomial distribution hypothesis (normal 
distribution). Added to the assumption of homoscedasticity, 
the conditional scatterplots have the same shape, we end up 
with linear discriminant analysis. It is very attractive in 
practice because the ranking function is expressed as a linear 
combination of the predictor variables, easy to analyze and 
interpret. Discriminant analysis is used in the context of 
modelling a qualitative variable 𝑌	 à 𝐾	 categories 
(modalities) called variable to be explained (or endogenous 
variable or variable to be predicted), from quantitative 𝑝 
quantitative variables called explanatory variables (or 
exogenous variables or predictors). Discriminant analysis 
can be considered as an extension of the regression problem 
to the case where the variable to be explained is qualitative.  
We have	𝑛 individuals (or observations) described by 𝑝 
variables and divided into 𝐾 classes (groups) given by the 
qualitative variable 𝑌. The	𝐾 classes are known a priori. The 

http://jeeemi.org/index.php/jeeemi
https://fr.wikipedia.org/wiki/Statistique
https://fr.wikipedia.org/wiki/Analyse_en_composantes_principales
https://fr.wikipedia.org/wiki/Apprentissage_automatique
https://fr.wikipedia.org/wiki/Arbre_de_d%C3%A9cision
https://fr.wikipedia.org/wiki/R%C3%A9seaux_de_neurones
https://fr.wikipedia.org/wiki/Analyse_discriminante_lin%C3%A9aire


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                   Vol. 5, No. 3, July 2023, pp: 134-142;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                            137 

qualitative variable 𝑌 therefore has	𝐾	modalities (it is the 
modalities of 𝑌 which define the classes). 
Note: 
𝑥7		
. the value of the jth explanatory variable measured on the 

ith individual. 
𝑋7 = (𝑥7		! , … , 𝑥7

&)′ ∈ ℝ& a line of 𝑋	describing ith 

individual. 
𝑋. =	 (𝑥!		

. , … , 𝑥;
.)′ ∈ ℝ; a column of	𝑋 describing jth 

individual. 
𝐺1: the group of individuals in the sample who have the 
modality 𝑘 
𝑛1 = 𝑐𝑎𝑟𝑑(𝐺1) the number of individuals who have the 
modality 𝑘 
The sets {𝑋7 ∖ 𝑖 = 1, 𝑛`̀ `̀ `} ⊂ ℝ&	𝑒𝑡	{𝑋. ∖ 𝑗 = 1, 𝑝`̀ `̀`} ⊂ ℝ; 
denote the clouds of individuals and variables respectively. 

The variable 𝑌	allows us to define, taking into account the 𝐾 
modalities, a partition of the set of individuals into 𝐾 subsets 
𝐺!, 𝐺2	… . , 𝐺/ with the individual 𝑖 belonging to 𝐺/  if it is 
the kth modality of the qualitative variable which is realized. 
For our case we will present the discriminant analysis as a 
predictive technique (linear discriminant analysis).  
 Linear discriminant analysis 
In the case where the variance-covariance matrices are 
identical  ∑ =! … .∑ = ∑1  (homoscedasticity hypothesis 
or equicovariance hypothesis), the calculations will be 
simplified. This assumption can be interpreted geometrically 
in terms of the shape and volume of the point clouds in the 
representation space: these clouds will have the same shape 
(and volume). 
In this case, the Bayesian assignment rule is written in 
equation (6) [5],[7]: 

𝐺1∗ = arg𝑚𝑎𝑥
14!,/

g𝑥'∑ ,! 𝜇1 −
!
2
𝜇1' 	∑

,! 𝜇1 +

ln(𝜋1)k																																																																												(6)                                                           
Indeed, by developing the quantity in equation (7) [5],[6]: 
𝐷12 = (𝑥 − 𝜇1)'∑

,! (𝑥 − 𝜇1) − 2 ln(𝜋1) + ln|∑ | (7)                                                                      
There are in equation (8) [5],[6]:  
𝐷12 = 𝑥'∑ ,! 𝑥 − 2𝑥′ ∑ ,! 		𝜇1 +	𝜇1' 	∑

,! 	𝜇1 −
	2 ln(𝜋1) + ln|∑ |																																									(8) 

So minimizing 𝐷12(𝑥) is equivalent to maximizing in 
equation (9) [5],[6]: 
− !
2
(−2𝑥′∑ ,! 		𝜇1 +	𝜇1' 	∑

,! 	𝜇1 − 	2 ln(𝜋1))	 (9)                                                                          
(For 𝑥' ∑ ,! 𝑥 and  ln|∑ | does not depend on 𝑘). The 
maximum likelihood estimators are in equation (10) [5],[6]:  
𝜇1n = 𝑔1 =

!
;0
∑ 𝑥77∈=0                                                  (10)                                                                                                                    

∑o = 𝑊 = !
;
∑/14! ∑ (𝑥7 − 𝜇1)(𝑥7 − 𝜇1)′7∈=0 =

!
;
∑ 𝑛1𝑉1/
14!                                                       

Or the unbiased version 𝑊 = !
;,/

∑ 𝑛1𝑉1/
14!  

This gives the classification rule of linear discriminant 
analysis: in equation (11) [6],[7]: 

𝐺1∗ = arg𝑚𝑎𝑥
14!,/

𝐿1 (𝑥)                                           (11)                                                                                                                  

Where 𝐿1 (𝑥) = 𝑥'𝑊,!𝑔1 −
!
2
𝑔1'𝑊,!𝑔1 + ln(𝜋1)o  is the 

linear discriminant function of the group 𝐺1 (also called the 
linear ranking function). Each linear discriminant function 
defines a score function and a new observation will be 
assigned to the group with the highest score. 
 
H. TESTS AND SELECTION OF DISCRIMINANT 

VARIABLES 
1) HOMOSCEDASTICITY AND BOX TEST 

The hypothesis of equality of the matrices ∑1  can be 
tested using the Box test. If the hypothesis ∑! = ∑2 =
⋯ = ∑1  is true, the quantity: in equation (12) [5],[6]: 
(1 − 2&->?&,!

@(&>!)(1,!)
) rg∑ !

;0,!
−	 !

;,/1 k (𝑛 − 𝐾) ln s ;
;,/

𝑊s −

∑ (𝑛1 − 1) ln s
;0
;0,!

	𝑉1s1 t                     (12) 

This is followed by approximately one 𝒳2 à &(&>!)(/,!)
2

 
degrees of freedom. 
 
2) WILKS' TESTS 

Let the following assumptions apply: 
Null hypothesis: 𝐻- = conditional centres of gravity are 
merged: independence between 𝑋	𝑒𝑡	𝑌	(𝑢! = 𝑢2 = ⋯ =
𝑢/). Alternative hypothesis: 𝐻!= there is at least one centre 
of gravity that deviates significantly from the others. 
The test statistic is Wilks' lambda, its expression is as 
follows: in equation (13) [5],[6]: 
Λ = |B|

|C|
= |B|

|B>D|
= |!|

|B1*D>E|
                                             (13)                                                                                                               

It follows Wilks' law with parameter (𝑝, 𝑛 − 𝑘, 𝑘 − 1) at 𝐻- 
with |𝑊| represents the determinant of the within-group 
variance-covariance matrix and |𝑉| the determinant of the 
overall variance-covariance matrix.  𝐻- is rejected if Λ 
calculated is less than Λ tabulated. This test can be expressed 
as a multidimensional generalization of the one-factor 
analysis of variance (ANOVA), in this case we speak of 
MANOVA (Multidimensional Analysis of Variance). 
It is rare to find the Wilks' law table implemented under the 
various existing statistical software. Therefore, if n is large 
enough, we will use the following Bartlett approximation: in 
equation (14) [6],[7]: 
𝒳2 = −r𝑛 − !

2
(𝑝 − 𝐾 − 1)t 𝑙𝑛(𝛬)	                             (14)                                                                                           

Which follows a law of  𝒳2  with P degrees of freedom.  
In the case where 𝐾 = 2we can use the Rao transformation 
which follows a Fisher distribution with parameter (𝑝, 𝑛 −
𝑝 − 1)The formula for the test statistic then becomes [5], 
[6], [21]: 

𝐹 = !,F
F

                                                        (15)                                                                                                                             
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FEATURES Mab114 
(Ebanga) 

(182) 

REGEN 
(181) 

ALL 
PATIENTS  

(363) 
Age 30±19 30±19 30.1±18 
Age_cat       
≤5 yrs 18(9.8) 15(8.3) 33(9.1) 
≥7days 13(7.1) 21(11.6) 34(9.4) 
5yrs to 18yrs 28(15.4) 28(15.5) 56(15.4) 
≥18yrs 123(67.6) 117(64.6) 240(66.1) 
dm_sex_x       
Female 111(51.4%) 105(48.6%) 216(59.5) 
Male 71(48.3%) 76(51.7%) 147 (40.5) 

 

 

III. RESULTS 
A. DESCRIPTIVE ANALYSES OF THE DATA 

Demographic and biochemical characteristics of the study of 
the 363 subjects, 182 received MAb114 (EBANGA) and 181 
received REGN-EB3. Most patients (66.1%) were aged ≥ 18 
years, 15.2% aged 6-17 years, 9.4% aged ≤ 5 years, of which 
9.1% were neonates (≤ 7 days) (TABLE 1 and TABLE 2).  
 

TABLE 1 
Social demographic characteristics of the study 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE 2 
Biochemical parameters 

 
 
B. MORTALITY BY STUDY ARM 

Regarding the mortality of the study, overall there were 
almost 40% deaths distributed according to the study arms: 
43.4% in the Mab114 (Ebanga) group and 35.9% in the 
REGENERON group (TABLE 3). 

TABLE 3 
Mortality by study arm 

 
The initial nuclear protein Ct in this study was 22.7 ± 5.6, 
with 50.4% unvaccinated patients versus 49.6% vaccinated 
patients. For malaria alone, 14.3% of patients tested positive.  
The mean baseline blood glucose was 109.4 ± 70.8 
mg/deciliter, the mean aspartate aminotransferase was 
439.1± 652.3 U/liter and the mean alanine aminotransferase 
was 321.2 ± 415.9U/liter. Regarding mortality and various 
biochemical parameters, the variable ctnp in deceased 
patients indicated that the deceased patients had high 
viremia. The Ctnp values were lower than 22. 19.39 ± 3.92 
in patients receiving Mab114 (Ebanga) and 18.97 ± 3.33 in 
patients receiving REGENERON. Patients who died had 
near-normal blood glucose levels. 106.29 ± 63.22 in patients 
receiving Mab114 and 105.72 ± 93.65 in patients receiving 
REGENERON. For creatinine, potassium and sodium, this 
table shows that different values are normal in two different 
groups of deceased patients. We note that the functional 
indices of hepatitis (aspartate aminotransferase (AST) and 
alanine aminotransferase (ALT)) in the deceased patients 
were above normal. 
 
C. MULTIVARIATE ANALYSIS 
1) LOGISTIC REGRESSION  

Our dependent variable is death and the different 
(independent) variables considered for the logistic regression 
are: age, viral load (ctnp), creatinine, glucose, potassium, 
sodium, aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT).  

2) COMPOSITE TESTS OF MODEL COEFFICIENTS AND 
MODEL SUMMARY  

The statistical indicator for the overall degree of association 
of the variables in the model is the chi-square. We can 
conclude that the 8 independent variables are globally 
associated with patient death (p-value=0.000). We can assess 
the quality of our regression by means of coefficients of 
determination: Cox and Snell R-two and Nagelkerke R-two. 
Our factors: age, viral load (ctnp), creatinine, glucose, 
potassium, sodium, ALT, AST influenced between 51 and 
70% of the deaths of the patients in our study.  

3) EQUATION VARIABLES (INTERPRETATION OF OR 
RISK MEASURES) 

FEATURES Mab114 
(Ebanga) 

(182) 

REGEN 
(181) 

ALL 
PATIENTS  

(363) 
ctnp 23.1±5.7 22.5±5.0 22.7±5.6 

ev_experimental_vaccine_x       

Not vaccinated 92(50.5) 91(50.3) 183(50.4) 

Vaccinated 90(49.5) 90(49.7) 180(49.6) 

ch_malaria_result_x       

Negative 122(67.0) 115(63.5) 237(65.3) 

Positive 25(13.7) 27(14.9) 59(14.3) 

99 35(19.2) 39(21.5) 74(20.4) 

ch_glucose_x 108.5±52.4 110.5±85.6 109.4±70.8 

ch_sodium_cu_x 124.2±3.4 119.5±37.7 121.8±34.2 

ch_ast_sgot_x 408.8±621.4 469,6±68.2 439.1±652.3 

ch_alt_sgpt_x 319.9±38.4 322.5±443.9 321.2±415.9 

 

death_due_to_evd_x Mab114 
(Ebanga) 

(182) 

REGEN 
(181) 

ALL 
PATIENTS 

(363) 
Not deceased 103(56.6) 116(64.1) 219(60.3) 

Deceased 79(43.4) 65(35.9) 144(39.7) 
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The model provides us with three (3) factors related to 
patient deaths among others: viral load 0.58(0.5-0.67), 
creatinine 1.98 (1.58-2; 49) and aspartate aminotransferase 
0.99(0.9-1) . We found that patients with high creatinine 
levels were twice as likely to die as patients without 
creatinine. Discriminant analysis is for the explanation and 
prediction of the membership of individuals in groups 
(classes), represented by a categorical target variable, by the 
set of explanatory/ descriptive tables, mainly quantitative but 
also qualitative upon examination [21]. 
 
4) MODEL VALIDATION TEST (BOX TEST AND WILKS' 

LAMBDA) 

To confirm or refute a model in discriminant analysis, we use 
the Box test and Wilks' lambda.  For the Box test, the null 
hypothesis is the equality of the variance matrices, in our 
case the probability is lower than the significance level (p-
value=0.00), so the null hypothesis is rejected, there is 
inequality of variances between the different groups. The 
Wilks' lambda is 0.48 (p-value=0.00), we conclude that our 
model is valid for the rest of the analysis (TABLE 4). 

TABLE 4 
Equation variables (Interpretation of OR risk measures) 

TABLE 5 
Discriminant function 

5) CANONICAL DISCRIMINANT FUNCTION 
We note that the 100% discriminating power attributed to the 
eight (8) variables is attributed to the first discriminating 
function. The relatively strong canonical correlation (72.1%) 
testifies to the high utility of the first discriminant function 
(TABLE 5). 
6) COEFFICIENTS OF STANDARDIZED CANONICAL 

DISCRIMINANT FUNCTIONS  
The linear discriminant analysis model yields three (3) 
factors associated with death in Ebola virus disease patients. 

The three factors are: viral load (0.88), creatinine (0.94) and 
AST (0.78) (TABLE 6). 
 
7) EVALUATE THE PREDICTION PERFORMANCE 

(PREDICTION PROBABILITY) OF TWO 
METHODS BY THE ROC CURVE. 

The logistic regression method predicted mortality for 132 
out of 363 subjects, or 36.5%, while the linear discriminant 
analysis predicted mortality for 141 out of 363 subjects, or 
38.8%. Receiver Operating Characteristic (ROC) curve 
analysis was used to assess the accuracy of predictions 
between one or more models. In our particular case, the two 
models (binary logistic regression and linear discriminant 
analysis) provide almost the same information, i.e. the area 

under the curve (AUC) is 0.935 for the binary logistic 
regression and 0.932 for the discriminant analysis (FIGURE 
1). 

 
FIGURE 1. The ROC curve. 

 
IV. DISCUSSIONS 
To evaluate the performance of our study, we compared our 
results with those of the following authors: In the work by 
Rani, D. et al [21] entitled: A methodological comparison of 

Variables B E. S Wald ddl Sig. Exp(B) 95% confidence 
interval for 
EXP(B) 

       
Lower Superior 

AGE 0.02 0.01 3.16 1 0.08 1.02 0.99 1.04 
ctnp -0.54 0.07 53.93 1 0.00 0.58 0.50 0.67 
ch_cre_x 0.68 0.12 35.56 1 0.00 1.99 1.59 2.49 

ch_glu_x 0.00 0.01 0.01 1 0.92 1.00 0.99 1.04 
ch_pot_x 0.05 0.09 0.22 1 0.64 1.05 0.86 1.26 

ch_sod_cu_x -0.01 0.01 1.85 1 0.17 0.99 0.98 1.04 

ch_alt_sgpt_x 0.00 0.01 0.11 1 0.74 1.00 0.99 1.01 

ch_ast_sgot_x -0.00 0.00 13.64 1 0,00 0.99 0.99 1.00 

Constant 11,08 1,60 47,76 1 0,00 65413,16 
  

 

TABLE 6 
Coefficient of the standardized canonical discriminant functions 

 
Variables Function  

1 
Age -0.06 
ctnp 0.88 

ch_creatinine_x 0.95 

ch_glucose_x 0.04 
ch_potassium_x -0.04 

ch_sodium_cu_x 0.17 

ch_alt_sgpt_x -0.10 
ch_ast_sgot_x 0.78 

 

Function Eigenvalue of variance Cumulative Canonical 
correlation 

1 1,085a 100,0 100,0 0,721 
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discriminant function analysis and binary logistic regression 
for estimating sex in forensic research and case-work, the 
aim of this study is to evaluate the accuracy of two 
multivariate statistical approaches for estimating sex from 
human external ear anthropometry, namely discriminant 
function analysis (DFA) and binary logistic regression 
(BLR). The predictive percentage of sex estimation 
calculated from the two models was approximately the same, 
i.e. 76.3% DFA and 76.2% BLR, for Altayeb Abdalla 
Ahmed et al [17], in their study of multidetector computed 
tomography: a comparison of discriminant function analysis 
and binary logistic regression.  The study assessed sexual 
dimorphism in the Sudanese sterna using multidetector CT. 
This information was used to develop sex estimation models 
and to compare the accuracy of models based on 
discriminant function analysis (DFA) and binary logistic 
regression (BLR). Cross-validation sex estimation 
accuracies without a single deviation ranged from 60.4 to 
88.9% for the DFA-based models and from 60.4 to 89.3% 
for the BLR-based models. Both studies show that 
discriminant analysis and linear logistic regression provide 
almost the same results. In our case, the study investigated 
the risk factors associated with mortality of patients with 
Ebola virus disease using two methods of analysis (logistic 
regression and linear discriminant analysis). We found the 
same risk factors influencing the mortality of the patients i.e. 
viral load, creatinine and aspartate aminotransferase and we 
evaluated the predictive accuracy of the two models (binary 
logistic regression and linear discriminant analysis) with the 
ROC curve, both methods provide almost the same 
information, i.e. the area under the curve (AUC) is 0.93 for 
the binary logistic regression and 0.93 for the discriminant 
analysis. The weakness of this study is that it only takes into 
account deterministic data to assess the risk factors of 
patients with Ebola virus, without considering fuzzy data. 
 
V. CONCLUSION 
This study focuses on the identification of risk factors 
associated with death in Ebola patients using binary logistic 
regression (LR) and linear discriminant analysis (LDA) 
methods in an observational study (randomized controlled 
trial). These two methods are most often used to determine 
the risk factors associated with the disease and sometimes 
estimate the probability of predicting disease-related 
mortality based on one or more factors. In the literature we 
know that some researchers have compared the performance 
of these two methods in terms of model coefficient, which 
gives the same results, i.e. the predictors (model variables) 
we find for logistic regression are the same as those we find 
in discriminant analysis [8], [17], [21], [22]. The main 
objective of our study was to quantify the factors (variables) 
influencing patient mortality and to predict the probability of 
death by using two predictive analysis methods (logistic 
regression and linear discriminant analysis) to evaluate the 
results produced by these two models. Note that the 
coefficients of the logistic and discriminant models give us 
the same information, i.e. the same risk factors. The factors 

provided by logistic regression are: viral load 0.58 (0.5-
0.67), creatinine 1.98 (1.58-2.49) and aspartate 
aminotransferase 0.99 (0.9-1). For linear discriminant 
analysis we have viral load (0.88), creatinine (0.94) and 
aspartate aminotransferase (0.78) [25]. We see the same 
results even when different prediction probabilities are 
evaluated. The logistic regression method predicted a 
mortality rate of 132 out of 363 or 36.5%, while the linear 
discriminant analysis predicted a mortality rate of 141 out of 
363 or 38.8%.  The ROC curve analysis allowed us to assess 
the nature of the models' predictions. The result of the area 
under the curve (AUC): 0.935 for the binary logistic 
regression and 0.932 for the discriminant analysis of the 
logistic regression [2], [8], [17], [22]. In the future, we will 
carry out another study comparing the two methods used in 
this paper with other existing predictive methods such as 
multinomial logistic regression, neural discriminant analysis, 
Bayesian networks, etc. We also plan to use fuzzy data to 
evaluate the performance of our study in a complex 
environment. We also plan to use fuzzy data to evaluate the 
performance of our study in a complex environment. 
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