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ABSTRACT Caused by the bite of the Anopheles mosquito infected with the parasite of genus Plasmodium, 

malaria has remained a major burden towards healthcare for years, with approximate 400,000 deaths reported 

globally every year. The traditional diagnosis process for malaria involves an examination of the blood smear 

slide under the microscope. This process is not only time-consuming but also requires pathologists to be 

highly skilled in their work. Timely diagnosis and availability of robust diagnostic facilities and skilled 

laboratory technicians are very much vital to reduce the mortality rate. This study aims to build a system that 

help in timely and accurate diagnosis of malaria which would help in reducing the mortality rate and 

eventually help is attaining a malaria free environment. Applying deep learning techniques such as transfer 

learning and snapshot ensemble to automate the detection of the parasite in the thin blood smear images. 

Snapshot ensemble, a technique to create better performing ensembles with a limited training budget. Instead 

of training multiple models, snapshots are recorded during the training phase, which are later ensembled to 

create one strong model. All the models were evaluated against the following metrics - F1 score, Accuracy, 

Precision, Recall, Mathews Correlation Coefficient (MCC), Area Under the Receiver Operating 

Characteristics (AUC-ROC) and the Area under the Precision Recall curve (AUC-PR). The snapshot 

ensemble model created by combining the snapshots of the EfficientNet-B0 pre-trained model outperformed 

every other model achieving a f1 score - 99.37%, precision - 99.52% and recall - 99.23%. The results show 

the potential of model ensembles which combine the predictive power of multiple weal models to create a 

single efficient model that is better equipped to handle the real-world data. The GradCAM experiment 

displayed the gradient activation maps of the last convolution layer to visually explicate where and what a 

model sees in an image to classify them into a particular class. The models in this study correctly activate the 

stained parasitic region of interest in the thin blood smear images. Such visuals make the model more 

transparent, explainable, and trustworthy which are very much essential for deploying AI based models in 

the healthcare network. 

INDEX TERMS Deep Learning, Biomedical Imaging, Malaria Infected Cells, Thin Blood Smears, Digital 

Pathology. 

I. INTRODUCTION 

Malaria, a common disease which poses life threatening 
risks is mostly prevalent in the tropical and sub-tropical 
regions of the world. One of the oldest diseases known to 
mankind is caused by the bite of the Anopheles mosquito that 
acts as the vector for parasite transmission. The blood 
sucking event injects the parasite present in its saliva into the 
person’s blood stream. Studies show that the parasites trick 
the liver to support their growth and replication [1]. The 

parasites first multiply in the liver and later conquer the 
blood stream. Once the parasites are transmitted to the blood 
stream they multiply and invade the red blood cells, 
eventually killing them. The transmission of parasites 
between the vectors and the humans is a cyclic process in 
which the blood sucking event from an already infected 
person transmits parasites back into the mosquito where they 
multiply and grow again. Thus, a cyclic process is 
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established where the mosquito acts as a vector passing on 
the parasite from one person to another [2]. Malaria is 
usually caused by the P. falciparum, P. malariae, P. ovale, 
P. vivax and P. knowlesi species of the plasmodium in 
humans [3]. The P. falciparum (~75%) and P. vivax (~25%) 
species are known to have the major share on the global 
burden of malaria. Though P. falciparum accounts for most 
deaths, recent evidence suggests that P. vivax could also 
cause potential life-threatening conditions. Severe levels of 
the disease can even lead to complications of the respiratory 
system, infection spreading to the brain, acute renal failure, 
severe anemia, and bleeding complications. About 10% of 
patients with severe malaria die, primarily due to multiorgan 
dysfunction [4]. 

According to the World Malaria Reports 2020 released 
by the World Health Organization an estimate of 229 million 
cases were reported globally in the year 2019. About 409000 
deaths were reported globally in the year 2019. India 
accounted for about 86% of deaths in the South-East Asia 
Region [5]. Infants, children under 5 years, pregnant women 
are at a higher risk of getting infected by the parasite. Malaria 
during pregnancy can cause severe consequences leading to 
miscarriage, pre-mature delivery, lower than normal birth 
weight, congenital infection, and can even lead to perinatal 
death [6]. With such high risk and severity seen especially in 
case of pregnant women and children (below age of 5 years), 
it becomes essential to have a more robust system to be in 
place for an early and prompt diagnosis A timely and 
accurate diagnosis remains the utmost priority for a smoother 
recovery path.  

The detection of the parasite in the blood stream of the 
infected person is done using microscopic examination with 
infected person's blood specimen spread on a slide either as 
a thick or thin smear, stained with the staining agent to 
segment out the blood cells for examination under the 
microscope by highly qualified pathologists. Thick blood 
smears aid in detecting the presence of malarial parasites 
while the thin smears aid in parasite species identification 
and quantification [7]. However, this is a very time 
consuming and exhaustive process which requires 
pathologists to be highly skilled in their job. Also, in rural 
and remote regions that do not have good medical facilities, 
a timely diagnosis is a challenge which could affect the 
patient’s health condition and may even prove fatal at times. 
Regions where malaria is still categorized as an endemic is 
either due to the absence of proper health care facilities or 
due to the shortage of skilled pathologists [8]. United Nation 
and the Bill & Melinda Gates Foundation target to eradicate 
malaria globally by 2040 [9] while India is eyeing to attain 
the status of malaria free nation by the year 2030 as part of 
the Government of India’s initiative - National Framework 
for Malaria Elimination In India [10]. To achieve the target, 
there needs to be robust systems available and accessible 
globally which aim for quick and prompt diagnosis. Such 
systems will help in reducing the mortality rates and 
consequently contribute towards eradicating malaria.  

There have been numerous research activities towards 
detection of malarial parasites using computer vision, 

machine learning and deep learning techniques. The 
computer vision techniques involve segmentation of 
erythrocytes and feature extraction which are then fed to a 
classification algorithm. However, extracting good features 
is a challenging task and requires expert level domain 
knowledge. Recent development in the deep learning 
systems have shown to be able to extract and learn the 
relevant features automatically. Convolutional Neural 
Networks, Transfer Learning and Model Ensembles are 
some application of deep learning systems which stand out 
in image classification tasks performing at par with the 
human level intelligence. 

The objective of this study is to build a deep learning 
system that help in timely and accurate diagnosis of malaria 
using a discounted ensemble building technique known as 
Snapshot Ensemble that assist in building strong learners at 
the cost of training only a single deep learning model. 

The rest of the paper is organized into the sections of 
literature review which discuss the methods applied in 
previous studies related to malaria classification, material 
and methods section which discusses the methods applied in 
this study, results and discussion section which analyzes the 
results obtained in the experiments of this study and 
compares them with the previous studies and finally the 
conclusion section which summarizes the study and 
mentions the scope for future work. 

 II. LITERATURE REVIEW 

Image processing, and machine learning based 
algorithms have been used extensively for detection of 
malarial parasites. Machine learning algorithms require hand 
crafted features to be fed as input. Feature extraction can be 
a complicated task that requires an expert level domain 
knowledge and is also error prone. Various image processing 
methods are applied to remove unwanted information, 
enhance the quality, and extract relevant pixel-based features 
from the images. However, deep learning removes the 
burden of manual feature extraction, and has turned out to be 
the preferred choice for malaria classification in the recent 
times. 

Image processing techniques like filtering, contrast 
stretching, segmentation, thresholding, and morphological 
operations have been applied to enhance the image quality 
and extract features. Filtering techniques have been widely 
used to remove any noise present in the whole slide images. 
Di Ruberto et al. [11] apply a (5x5) median filter for 
smoothening and noise removal. Díaz et al.  [12] utilized the 
low-pass filter to get rid of the noisy components from the 
slide images. Anggraini et al. [13] applied median filter for 
noise removal. May et al. [14] implemented median filtering 
technique to get rid of any salt-and-pepper noise in the image 
and also suggested the use of Weiner filter to get rid of any 
gaussian noise in the image. Savkare and Narote [15] 
recommend application of Laplacian filtering technique for 
image smoothening and edge enhancement. Gaussian low-
pass filter has been implemented by Arco et al. [16]. Dong et 
al. [17] apply filtering techniques as part of the image pre-
processing phase to avoid learning of  irrelevant information 
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by the neural network. Loddo et al. [18] discuss the 
application of morphological filtering techniques for noise 
removal. 

Anggraini et al. [13] apply contrast stretching to boost the 
properties of the parasite objects. May et al. [14] applied 
histogram stretching to enhance the contrast of the images. 
Histogram Equalization is applied by Savkare and Narote 
[15] to enhance contrast along with Partial Contrast 
Stretching, a linear mapping which works on the range of the 
average of the maximum and minimum red, green, blue 
intensity values. Adaptive Histogram Equalization is applied 
by Arco et al. [16] for localized contrast corrections to 
enhance the region of interest. A wide range of contrast 
correction techniques have been implemented to enhance the 
images but the partial contrast stretching, and adaptive 
histogram equalization prove to perform better on the 
pathological images. 

Di Ruberto et al. apply simple thresholding technique to 
segment the region of interest and apply morphological 
closing to separate the white blood cells from the red blood 
cells [11]. Morphological difference is analyzed for pattern 
recognition and classification of parasites. Anggraini et al. 
[13] and May et al. [14] applied Otsu’s algorithm to 
determine the objects of interest. A two-stage color 
segmentation technique to identify the region of interest and 
remove the white blood cells is applied by Prasad et al. [19]. 
Khan et al. [20] take the unsupervised learning approach and 
apply K-means clustering multiple times to segment the 
infected erythrocytes from other blood components. Savkare 
and Narote [15] and Bairagi and Charpe [21] apply Otsu’s 
and Watershed algorithm with morphological opening to 
separate the overlapping red cells. Arco et al. [16] apply the 
adaptive threshold mechanism along with morphological 
closing to improve the segmentation of objects of interest. 
Dong et al. [17] applied thresholding with Hough Circle 
transformation to separate overlapping erythrocytes. GI et al. 
[22] applied a two-staged segmentation process involving 
adaptive thresholding followed by watershed algorithm to 
detach the overlapping red cells. Pan et al. [23] apply Otsu’s 
algorithm followed by morphological closing to remove the 
irrelevant information. Nag et al. [24] apply watershed 
algorithm to separate the overlapping objects. 

The degree of success for any machine learning system 
depends on the quality of features fed to the algorithm. 
Extracting the best features requires an expert-level domain 
knowledge and understanding the morphology of various 
blood components and the parasite life cycle. Various set of  
features have been extracted to solve the problem and have 
enjoyed a varied level of success. Savkare and Narote [15] 
extract textual and morphological features based on  mean, 
standard deviation. kurtosis, area, perimeter, major/minor 
axis of the erythrocytes. Bairagi and Charpe [21] apply Gray-
Level Co-occurrence Matrix (GLCM) to extract the textual 
features like the contrast, pixel’s correlation with the 
neighbors and energy (sum of the squares of the elements in 
the GLCM matrix). Park et al. [25] extract features based on 
morphology, geometry as elongation, equivalent diameter, 
eccentricity and statistical features of skewness, kurtosis. 

Bashir et al. [26] extract features related to skewness based 
on the pixel intensity values. Dong et al. [17] use the 
Kullback-Leibler distance to determine the best features. 
Bibin et al. [27] used histogram-based features, color 
coherence vector and textual features like the Haralick 
features derived from the GLCM matrix, Local Binary 
Pattern features and Gray Level Run Length Matrix features 
to train the system. Gezahegn et al. [28] utilize the Scale 
Invariant Feature Transformation to create a bag-of-features. 
Nag et al. [24] extract features based on texture and 
morphology to filter the white blood cells. 

The extracted features are fed to the algorithms which try 
to learn the relations and representations of the features that 
enable to detect the presence of parasites. Many algorithms 
have been implemented relishing a varied level of success. 
Ross et al. [29] implemented a two-stage backpropagation 
feed-forward network system classifying the erythrocytes as 
infected and not infected in the 1st stage and classify the 
parasite species in the 2nd stage achieving a sensitivity of 
85% and positive predictive value of 81%. Tek et al. [30] 
propose a generic sliding window technique on top of the 
Ada-Boost algorithm. Anggraini et al. developed an 
algorithm completely based on image processing and 
thresholding techniques to detect the parasite in the 
erythrocytes [13]. May et al. [14] propose a segmentation 
based system to segment out the infected cells and achieve 
the positive predictive value of 98.90%. Khan et al. [20] take 
the unsupervised learning approach and implement the K-
means clustering algorithm to extract two clusters - the 
malarial parasite infected cells and the other components 
achieving a precision of 0.95 and recall of 0.93. Savkare and 
Narote [15] implement the Support Vector Machine with the 
Radial Basis Function kernel in a two stage classification 
system. The correct identification rate of the binary classifier 
being 99.43% while the SVM classifier achieves an accuracy 
of 96.42% in identifying the life cycle stage of the parasite. 
Park et al. [25] conduct several experiments based on the 
Linear Discriminant Classification, Logistic Regression, and 
K-Nearest Neighbors algorithms achieving a classification 
accuracy greater than 95%. Bairagi and Charpe [21] apply 
the SVM algorithm and achieve an accuracy of 97.7%. 
Gezahegn et al. [28] proposed SVM-RBF based 
classification system. The system performs sub-optimally 
achieving an accuracy of 78.89%. Nag et al. [24] conduct 
multiple experiments based on K-Nearest Neighbors, Naïve 
Bayes, and Support Vector Machine with RBF kernel. The 
SVM model gives the best results with an accuracy of 
97.59%. An ensemble of the above 3 models is created which 
achieves an accuracy of 98.74%. 

The deep learning framework eliminates the need to 
extract hand-crafted features. Liang et al. [31] propose a 17-
layer custom CNN model and a transfer learning approach 
utilizing the pre-trained AlexNet [32] as feature extractor 
linked to the SVM classifier for final classification achieving 
a classification accuracy of 97.37% and 91.99% 
respectively. Dong et al. [17] evaluate the performance of 
pre-trained deep neural models like LeNet, AlexNet and 
GoogleNet. GoogleNet outperformed others owing to its 
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greater depth and thus the ability to extract more detailed 
features. Bibin et al. [27] implement a deep belief network 
with 4 hidden layers each trained as a Restricted Boltzmann 
Machine to distinguish the stained objects. The system 
outperforms most state-of-the-art models with a small error 
rate of 0.0379. GI et al. [22] utilize the focus stack of images 
on a CNN model achieving sensitivity of 97.06%, specificity 
of 98.50% and Matthews Correlation Coefficient of 0.7305. 
Pan et al. [23] evaluate the effect of data augmentation on 
pre-trained LeNet-5 model and achieve an accuracy above 
90%. Rajaraman et al. [33] assess the performance of pre-
trained state-of-the-art models on malaria images. Features 
were extracted from various layers of these models and 
observed that the final layer of the models does not always 
provide optimal features. ResNet-50 outperformed others 
achieving an accuracy of ~95%. Hung et al. [34] propose a 
model based on faster region based network where 
convolution is done only once per image. A Region Proposal 
Network proposes various object regions with bounding 
boxes and the Object Detector based on the AlexNet 
performs the final classification of the objects as schizonts, 
trophozoites achieving an accuracy of 98%. A lightweight 
CNN model composed of 11 layers is proposed by Yang et 
al. [35] achieves an average accuracy of 93.46%. Rahman et 
al. [36] perform transfer learning experiments with VGG-16 
pre-trained model achieving a test accuracy of 97.77% and a 
hybrid model combining CNN and SVM. The ensemble of 
the above models achieves an accuracy of 97.78%. 
Rajaraman et al. [37] propose ensemble of deep networks 
with various transfer learning models acting as the weak 
learners. The ensemble of VGG-19 and SqueezNet 
outperforms every other model with an accuracy of 99.51%. 
Vijayalakshmi et al. [38] take the amalgamated training 
approach by combining the feature extraction power of the 
VGG-19 and the classification power of the SVM achieving 
an accuracy of 93.13%. 

An extensive literature survey helps to draw out the 
following observations on the various techniques applied on 
the whole slide images-  

1. Median filters are the most widely used for noise 
removal.  

2. Otsu’s and Watershed algorithm followed by 
morphological operations in widely used for 
segmentation of various components  and mark the 
region of interest.  

3. Various features based on pixel, texture, spectral, color, 
statistics, etc. have been extracted to enhance the pattern 
identification in the cellular components. 

4. SVM with RBF kernel has been widely used for malaria 
classification. 

However, the entire process of feature extraction could be 

error-prone and since all the tasks in the pipeline are 

sequential, any fault that may have happened in the initial 

stages, gets forwarded to the model resulting in an inaccurate 

diagnosis. Recent studies have started to explore deep learning 

which removes the process of manual feature extraction. This 

saves time and minimizes the need to have an expert-level 

domain knowledge. The lack of labelled data is avoided 

through the data augmentation techniques. 

III. MATERIALS AND METHODS 

A. DATASET  

1) DESCRIPTION  

The dataset to be used for this study is taken from the 
National Library of Medicine, part of the National Institute 
of Health [39]. The dataset is an archive of red blood cells 
segmented using the Giemsa stained slides. The samples are 
taken from 150 infected and 50 uninfected persons at the 
Malaria screener research activity in CMC hospital in 
Bangladesh. A total of 27,558 erythrocyte images 
comprising of equal instances (13779) from each category. 
FIGURE 1 shows a few data samples from the parasitized 
and non-parasitized category. 

 
FIGURE 1 - Sample Data 

2) DATA ANALYSIS 

Bio-medical images are very diverse. For a similar 
pathological condition, images could vary invariably from 
person to person and even for the same person for different 
encounters. These differences may be attributed to the 
variation in lighting conditions, difference in marker stains 
(for pathological tests), image extraction process, image 
dimension, etc. Image Preprocessing ensures that all the 
images are in the same standard format and clean from any 
noise that would not add any relevance for the analysis. In 
this study, all images are resized to a dimension of (135, 135) 
and every image goes through the normalization and 
standardization process centering the pixel values around the 
mean to ensure the faster convergence in the training phase. 
This will result in a simple, accurate and a robust 
classification system. 

3) DATA SPLIT 

Since deep learning systems require huge amount of 
training data to learn all the underlying image patterns and 
representations, the dataset is split in the ratio 75:15:10. The 
training set gets 75% of the data while the test set and the 
validation set get 15% and 10% of the data respectively. 

B. SYSTEM DESIGN AND ARCHITECTURE 

Convolution Neural Network (CNN) form the base of all 
the models and experiments to be conducted. An image in its 
raw format translates to an array of pixel values. The 
neighboring pixels are highly correlated and usually form the 
basis of feature extraction. CNNs exploit this correlation by 
applying the techniques like local receptive fields, weight 
sharing, pooling and use of multiple layers making the entire 
architecture deep.  
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1) PROGRAMMING RESOURCES 

Programming task in the study is done on a cloud based 
system with CUDA enabled Nvidia Tesla K80 GPU, 4 core 
CPUs, 20 GB RAM. The programs are written in Python 3.6 
using the web-based Anaconda Jupyter environment. The 
deep learning models are created using Keras library with 
Tensorflow 2.2 backend enabled with GPU acceleration. All 
the image processing and computer vision tasks are carried 
out using the Open Source Computer Vision (OpenCV) 
library. 

2) CUSTOM MODEL 

A custom model with a total of 13 layers is designed 
having 3 convolutional layers with 32, 64, and 128 filter units 
respectively, 2 max-pooling and a Global Average Pooling 
layer is designed from scratch. Each convolutional unit is 
ReLU activated with Batch Normalization. Filters of size 
(3x3) with padding set to ‘same’ convolves the input. The 
Max Pool layers have pool window of (2x2). The final 
classification layer is a dense layer with one unit and sigmoid 
activation. The model design is shown in FIGURE 2. 

3) TRANSFER LEARNING 

CNNs are basically feature extractors that learn the 

representation of an image. The state-of-the-art CNN models 

have learnt to extract features from millions of images. The 

skills of these models can be reused and applied to solve a 

related problem known as transfer learning. The main reasons 

to reuse the knowledge of the pre-trained models are lack of 

proper annotated data and computational resources. The lack 

of proper annotated bio-medical images makes transfer 

learning an important aspect when applying deep learning in 

the field of digital pathology. The initial layers of a CNN 

extract the generic features (corners and edges), the middle 

layers extract abstract features by aggregating the corners and 

edges, while the last few layers are utilized for classification 

of images based on the features extracted. The final layers of 

the pre-trained models might not be useful in classifying the 

pathological images and could be removed. A smaller learning 

rate is chosen to ensure all the previous knowledge of the base 

model is retained and reused.  

State-of-the-art architectures like ResNet50-V2, DenseNet-

121, Inception-v3, Xception,  InceptionResNet-V2, and 

EfficientNet  have attained optimal performance by training 

over millions of images and will be utilized for transfer 

learning. FIGURE 3 shows a transfer learning model 

implementing EfficientNet-B0 network as the convolutional 

base. 

The dataset consists of only 13779 images of each category 

respectively. Deep learning systems need huge amount of data 

to learn all possible representations and be able to perform 

optimally in the real-world environment. To increase the 

diversity and amount of training data, various augmentation 

techniques like flipping, rotation, cropping, translation, 

illumination, scaling, shift, and zoom are applied. 
 

 

 
FIGURE 2 - Custom Model Design 
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FIGURE 3 EfficientNet-B0 Transfer Learning Model 

 

4) SNAPSHOT ENSEMBLE 

The overhead cost of training multiple deep neural 
networks could be very high in terms of the training time, 
hardware, and computational resource requirement and often 
acts as obstacle for creating deep ensembles. To overcome 
these barriers Huang et al. [40] proposed a unique method to 
create ensemble which at the cost of training one model, 
yields multiple constituent model snapshots that can be 
ensembled together to create a strong learner. The core idea 
behind the concept is to make the model converge to several 
local minima along the optimization path and save the model 
parameters at these local minima points. During the training 
phase, a neural network would traverse through many such 
points. The lowest of all such local minima is known as the 
Global Minima. The larger the model, more are the number 
of parameters and larger the number of local minima points. 
This implies, there are discrete sets of weights and biases, at 
which the model is making fewer errors. So, every such 
minimum can be considered a weak but a potential learner 
model for the problem being solved. Multiple such snapshot 
of weights and biases are recorded which can later be 
ensembled to get a better generalized model which makes the 
least amount of mistakes.  

 
FIGURE 4. Snapshot Ensemble Cyclic LR 

 

The left plot in FIGURE 4 shows the global minimum 
point (blue flag) where the model converges to at the end of 
the training phase. The plot on the right, shows the model 
converging to 3 different local minimums (red flags) along 
its optimization path. At each local minimum point the model 

weights and biases are saved. The training is then restarted 
by increasing learning rate. The idea in increasing the 
learning rate is to take a big step and escape the local 
minimum. The learning rate follows a cyclic pattern as 
suggested by Loshchilov and Hutter [41] where the learning 
rate is quickly raised and then lowered to follow the cosine 
pattern as seen in FIGURE 5. 

 
FIGURE 5.  Cosine Annealing 

 

Cosine Annealing proposed in [41] is used to decay the 
learning rate is defined as -  

∝ (𝑡) =  
∝0

2
 (cos (

𝜋 𝑚𝑜𝑑(𝑡−1,⌈T M⁄ ⌉)

⌈T M⁄ ⌉
) + 1) (1) 

where, ∝(t) is the learning rate at epoch t, ∝0  is the 
maximum learning rate, T is the total number of epochs, M 
is the number of cycles, mod is the modulo operation, and 
square brackets indicate a floor operation. 

At the end of full training cycle, there will be ‘M’ 
different models available ready to be ensembled with no 
additional overhead cost. During the test time, “the last ‘m’ 
model snapshots are always considered for the final 
ensemble as these tend to have the least error rate”. The final 
output is the average of the snapshot models and is calculated 
as per the following equation defined in [40]. 

 ℎ𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  
1

𝑚
∑ ℎ𝑀−𝑖(𝑥)𝑚−1

0   (2) 

where, x is the sample test set, hi(x) is the softmax output 
score of the ith snapshot. 

For this experiment, (1) a custom model with 4 
convolution layers as seen in FIGURE 6 is implemented to 
create snapshots and (2) a snapshot ensemble model to be 
created out of the best performing transfer learning model. 

5) GRAD-CAM - VISUAL EXPLANATIONS 

The application of AI systems in healthcare domain is a 
challenging task mainly because the factors involved in 
arriving at a decision by the machines are not explainable. 
Questions like, how did the machine arrive at the decision? 
or what did the machine see to classify the blood smear as 
infected by malaria parasite? will always be asked to 
understand the machine’s thought process to arrive at 
decisions in healthcare based AI systems. To understand the 
dynamics of deep networks Selvaraju et al. [42] proposed a 
technique to visually explain an AI system’s decision and 
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make it more transparent. The Grad-CAM technique 
explains a model’s decision making process answering, 
“why they predict what they predict”. Grad-CAM relies on 
convolutional layer as they tend to retain the spatial 
information. It utilizes the gradient activations coming into 
the last convolutional layer as these layer contain more class 
specific features. The gradient score of the concerned class 
is calculated with respect to the feature map activation of the 
convolution layer given by the formula -  

 ∝𝑘
𝑐  =  

1

𝑍
 ∑  ∑  

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑗𝑖  (3) 

Once the gradient scores are calculated, ReLU is applied to 
the weighted linear combination of the forward activation 
maps to consider only those features that have a positive 
impact on the class of interest. 

 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ ∝𝑘

𝑐
𝑘 𝐴𝑘) (4) 

The Custom Model in FIGURE 2, will be utilized to 
visualize the internal dynamics of what a model sees to arrive 
at the decision. 

6) HYPERPARAMETERS & CALLBACKS 

All the model experiments will be implemented using the 
hyperparameters and call backs mentioned in TABLE 1 

 
 

 

 

 

 

 

 

 

 

 

FIGURE 6.  Custom Model for Snapshot Ensemble 

 

 

 

 

TABLE 1 

Model Training Parameters 

Hyperparameter Value 

Activation 

Function 
ReLU, Sigmoid 

Cost Function Binary Cross Entropy 

Learning Rate 1 x 10-3 

Optimizer Adam  

Epochs 50 

Dropout Ratio 0.3 / 0.5 

Batch Size 64 

Training  

Callbacks 

ModelCheckpoint, 

ReduceLROnPlateau  

Early Stopping  

Cosine Annealing 
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IV. RESULTS AND DISCUSSIONS 

Several experiments were conducted with custom 
models, transfer learning and snapshot ensemble strategies. 
Custom model experiment was extended to analyze the 
network gradients and understand the dynamics of the 
model’s approach in arriving at a decision.  
(Note: all the evaluation metrics are measured in 
percentage.) 

A. CUSTOM MODEL 

The custom model is set to train for 50 epochs with an early 
stopping strategy after 7 epochs. The model trained for 34 
epochs before being early stopped. The training and 
validation history is seen in  FIGURE 7. The model 
converges well enough on training and validation data. The 
performance metrics on the test data of the model is 
summarized in TABLE 2. The model achieves an accuracy 
of 96.95% which is reasonably well for the baseline model. 
However, the number of false negatives is 81 which is quite 
high for a healthcare model for identifying disease. False 
negatives occur when a person having malaria is declared 
healthy. This will hamper the timely diagnosis, treatment for 
the patient and may have fatal consequences. The target is to 
reduce the number of false negatives. 

 

FIGURE 7. Custom Model Training History 

 

B. GRAD-CAM VISUAL EXPLANATIONS 

The custom model from the previous experiment was 
extended to visualize the gradients that help a model come to 
a decision. FIGURE 8, rows 1 & 3, show parasitized cells, 
where the model is looking and activating the stained 
parasitic region in the images correctly. For the image in the 
2nd row, which is the non-infected cell, the model has no 
regions activated within the cell. 

Visuals like these will  help in designing explainable AI 
systems which are able to provide meaningful explanations 
as to why a particular decision was made? Such 
developments and capabilities would make the adoption of 
AI into the healthcare domain realistic and smoother.  
 

 
FIGURE 8. Grad-CAM Visual Explanations 

C. TRANSFER LEARNING 

Pre-trained model like 'DenseNet121', 'EfficientNet-B0', 
'Inception-v3', 'InceptionResNetV2', 'ResNet50V2', and 
'Xception' were utilized to check the efficiency of transfer 
learning in malaria classification problem. The last layer 
before the final classification layer were selected as feature 
extractors and the model were trained for 50 epochs with 
early stopping patience level set at 7. The training and 
validation summary for all the models are summarized in 
FIGURE 9. 
The evaluation metrics obtained on the test data is 
summarized in TABLE 3. EfficientNet-B0 outperformed 
every other state-of-the-art model and achieved the highest 
F1 score of 97.95% followed by the DenseNet121 with an  
F1 score of 97.81%. EfficientNet-B0 records the least 
number of false negatives. 

TABLE 2  
Custom Model Test Evaluation 

Model 
Confusion 

Matrix 
F1 

Score  
Accuracy Precision Recall MCC AUC ROC 

AUC 
PR 

Custom 
Model  

0 2016 45 

1 81 1992 

 0 1 
 

96.93 96.95 97.79 96.09 93.92 96.95 97.92 
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D. SNAPSHOT ENSEMBLE 

The ensemble experiment was performed on two different 
models to test the effectiveness of the ensembles and ensure 

that ensembles perform better than the single model. One, a 
custom model represented by FIGURE 6 and second, the 
EfficientNet-B0 model since it turned out to be the best 
performing model in the transfer learning experiment. 

TABLE 3 

Transfer Learning Test Evaluation Metrics 

Model 
Confusion  

Matrix 
F1 

Score 
Accuracy Precision Recall MCC Loss 

ROC  
AUC 

AUC 
PR 

DenseNet121 
0 2015 46 

1 45 2028 

 0 1 
 

97.81 97.80 97.78 97.83 95.60 5.82 97.80 98.35 

EfficientNet-B0 
0 2015 46 

1 39 2034 

 0 1 
 

97.95 97.94 97.79 98.12 95.89 6.82 97.94 98.43 

Inception-V3 
0 2019 42 

1 48 2025 

 0 1 
 

97.83 97.82 97.97 97.68 95.65 6.75 97.82 98.41 

InceptionResNet-
V2 

0 2016 45 

1 48 2025 

 0 1 
 

97.76 97.75 97.83 97.68 95.50 6.75 97.75 98.34 

ResNet50-V2 
0 2018 43 

1 49 2024 

 0 1 
 

97.78 97.77 97.92 97.64 95.55 6.54 97.77 98.37 

Xception 
0 2013 48 

1 47 2026 

 0 1 
 

97.71 97.70 97.69 97.73 95.40 6.76 97.70 98.28 

 

 
FIGURE 9. Transfer Learning Validation History 
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1) CUSTOM MODEL SNAPSHOTS 

The custom model was configured to utilize cosine annealing 
cyclic learning rate scheduler. The model was set to train for 
50 epochs and the number of cycle was set to 5 since the 
ensembled model is most effective when the snapshots are 
extracted far apart during the training phase. The snapshots 
were recorded each at the end of 10th, 20th, 30th, 40th and 
50th epochs respectively. Each of the snapshot was evaluated 
on the test data and the results are summarized in TABLE 4. 
The evaluation metrics gradually increases towards the final 
snapshots while the number of false predictions decrease 
steadily. Ensembled models were created by combining the 
snapshots. As mentioned in [40], “at the test time, the last 
‘m’ models are always considered for the final ensemble as 
these tend to have the least error rate.” snapshots 4 and 5 with  
test time loss of 6.06% and 5.98% respectively were always 
considered for creating the ensembled models. 

Three different combinations of the snapshots were 
combined to create the ensembles. Ensemble 1 combined 
every snapshot [1 to 5], Ensemble 2 combined snapshots [3, 
4, 5] and Ensemble 3 combined snapshots [4, 5]. Each of the 
ensembled model was evaluated on the test data and the 
results are summarized in TABLE 5. Ensemble 3 
outperforms the other ensembles and the individual model 
obtained at the end of 50 epochs. Ensemble [4, 5] achieves a 
f1 score of 98.44% which is an increase of around 2.9% from 
the fully trained single model. Snapshots 1 and 2 do not 
contribute enough towards the ensemble performance. This 
could be accounted to a relatively higher loss as the model is 
still learning during the initial cycles of the training phase. 
Snapshots 3, 4 and 5 have much of the contribution to the 
ensembled model. 

 

TABLE 4 
 Custom Model Snapshots Test Evaluation Metrics 

Snapshot 
Confusion  

Matrix 
F1 

Score  
Accuracy Precision Recall MCC Loss 

ROC  
AUC 

AUC 
PR 

Snapshot 1 
0 2024 37 

1 116 1957 

 0 1 
 

96.24 96.30 98.14 94.40 92.67 11.45 97.94 98.43 

Snapshot 2 
0 2024 37 

1 93 1980 

 0 1 
 

96.82 96.86 98.17 95.51 93.75 8.99 96.86 97.96 

Snapshot 3 
0 2037 24 

1 81 1992 

 0 1 
 

97.43 97.46 98.81 96.09 94.96 7.19 97.46 98.43 

Snapshot 4 
0 2048 13 

1 66 2007 

 0 1 
 

98.07 98.09 99.36 96.82 96.21 6.06 98.09 98.88 

Snapshot 5 
0 2048 13 

1 48 2025 

 0 1 
 

98.52 98.52 99.36 97.68 97.06 5.98 98.53 99.10 

 
TABLE 5 

Test Evaluation for Ensembled Models 

Ensemble 
Confusion  

Matrix 
F1 

Score  
Accuracy Precision Recall MCC Loss 

ROC  
AUC 

AUC-PR 

Snapshot 
Ensemble  

[1, 2, 3, 4, 5] 

0 2044 17 

1 75 1998 

 0 1 
 

97.75 97.77 99.16 96.38 95.59 6.60 97.78 98.68 

Snapshot 
Ensemble 

[3,4,5] 

0 2048 13 

1 62 2011 

 0 1 
 

98.17 98.19 99.36 97.01 96.40 5.67 98.19 98.93 

Snapshot 
Ensemble 

[4,5] 

0 2048 13 

1 51 2022 

 0 1 
 

98.44 98.45 99.36 97.54 96.92 5.65 98.45 99.07 
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2) EFFICIENTNET-B0 SNAPSHOTS 

The callback settings for cosine annealing was kept same as 
the custom model with 50 epochs and number of cycles set 
to 5. The snapshots were recorded each at the end of 10th, 
20th, 30th, 40th and 50th epochs respectively. Each of the 
snapshot was evaluated on the test data and the results are 
summarized in TABLE 6. Here, five different combinations 
of the snapshots were tested to create the ensembled model. 
Ensemble 1 combined every snapshot [1 to 5], Ensemble 2 
combined snapshots [2, 3, 4, 5], Ensemble 3 combined 

snapshot [3, 4, 5], Ensemble 4 combined snapshot [3, 4], and 
Ensemble 5 combined snapshot [4, 5]. Each of the ensembled 
model was evaluated on the test data and the results are 
summarized in TABLE 7. 

E. INTERPRETING PREDICTION SCORE 

The model prediction on a test image gives the probability 
score for the cell being infected with the parasite. There are 
two samples in FIGURE 10 with infection probability of 
20.70% & 29.40% respectively. In both images a few 

TABLE 6 
EfficientNet-B0 Snapshots Test Evaluation 

Snapshot 
Confusion 

Matrix 
F1 

Score 
Accuracy Precision Recall MCC Loss 

AUC 
ROC 

AUC  
PR 

Snapshot 
1 

0 2039 22 

1 46 2027 

 0 1 
 

98.35 98.36 98.93 97.78 96.72 4.09 98.36 98.91 

Snapshot 
2 

0 2047 14 

1 28 2045 

 0 1 
 

98.98 98.98 99.32 99.65 97.97 3.21 98.99 99.32 

Snapshot 
3 

0 2047 14 

1 21 2052 

 0 1 
 

99.15 99.15 99.32 98.99 98.31 2.92 99.15 99.41 

Snapshot 
4 

0 2048 13 

1 17 2056 

 0 1 
 

99.28 99.27 99.37 99.18 98.55 2.79 99.27 99.48 

Snapshot 
5 

0 2050 11 

1 19 2054 

 0 1 
 

99.28 99.27 99.47 99.08 98.55 3.19 99.27 99.51 

 

TABLE 7 
EfficientNet-B0 Ensembled Models 

Ensemble 
Confusion 

 Matrix 
F1 

Score  
Accuracy Precision Recall MCC Loss 

AUC 
ROC 

AUC  
PR 

Ensemble 
[1, 2, 3, 

4, 5] 

0 2051 10 

1 20 2053 

 0 1 
 

99.27 99.27 99.52 99.04 98.55 2.53 99.28 99.52 

Ensemble 
[2, 3, 
 4, 5] 

0 2050 11 

1 19 2054 

 0 1 
 

99.28 99.27 99.47 99.08 98.55 2.50 99.27 99.51 

Ensemble 
[3,4,5] 

0 2049 12 

1 18 2055 

 0 1 
 

99.28 99.27 99.42 99.13 98.55 2.48 99.27 99.49 

Ensemble 
[3,4] 

0 2050 11 

1 18 2055 

 0 1 
 

99.32 99.32 99.52 99.13 98.65 2.56 99.32 99.54 

Ensemble 
[4,5] 

0 2051 10 

1 16 2057 

 0 1 
 

99.37 99.37 99.52 99.23 98.74 2.58 99.37 99.57 
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scattered, and not so clear stained spots are visible. Such 
samples with smaller parasitic density could be in the initial 
stages of the infection which the model is unable to detect 
fairly. Such samples cannot be left as uninfected. This 
scoring aspect can be improved by (a) collecting more 
samples that are in the initial stages of infection (b) introduce 
an infection severity scoring system based on the prediction 
probability. The infection severity levels proposed are High, 
Moderate, Low and Very Low. The severity levels would 
correspond to the probability scores defined in TABLE 8. 
Based on the infection severity and new scoring system, 
FIGURE 11 shows a few samples with probability score and 
infection severity. 

F. FALSE PREDICTION ANALYSIS 

All the experiments conducted report some amount of false 
predictions as false positives and false negatives. An analysis 
to verify these false predictions and examine a possible 
reason for false reports was conducted. The Snapshot 
Ensembled [4,5] model in TABLE 7 was chosen for this 
task. The confusion matrix of this model looks like [[2051, 
10] [16, 2057]]. The model reports a total of 26 false 
predictions of which 10 are false positives and 16 are false 
negatives. FIGURE 12 and FIGURE 13 show all the 
misclassified samples with their ground truth. As seen in the 
false positives, few samples clearly indicate the presence of 
the parasite after staining. However, they are labelled as 0 
(uninfected). Similar pattern is seen in case of false negatives 
where samples that do not show presence of parasite after 
staining being labelled as 1 (parasitized). Thus, there is some 
amount of error in the data annotation phase. Since the data 
is labelled manually, errors could happen. Correcting the 
labels and re-training the models could help to improve the 
model classification performance. 
 

 
FIGURE 11. Infection  Severity 

 

 
FIGURE 12. False Positives 

TABLE 8  
Infection Severity Score 

Probability 
Score Range (%) 

Infection 
Severity Level 

0 Uninfected 

0 - 5 Very Low 

5 - 25 Low 

25 - 50 Moderate 

>50 High 

 

 
FIGURE 10. Prediction Scores 
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FIGURE 13. False Negatives 

G. RESULT COMPARISON 

The results obtained in this study are compared with the 
results of the previous work that have been conducted 
towards malaria classification and discussed as part of 
literature review. The comparison is shown in TABLE 9. 
The EfficientNet snapshot ensemble model outperforms 
most of the previous work is all aspect and achieves 
comparable result with the work of Rajaraman et al. [37] who 
also experiment the efficiency of neural network ensemble. 
However, a major improvement of this work is attributed to 
the fact that snapshot ensemble creates better performing 

ensembles by training only a single model. This not only 
saves training time but also creates ensembles with a limited 
training budget in terms of hardware resources and 
computational power. 

The malaria detection system developed in this study will 
help in the accurate and timely diagnosis of malaria. The 
system can be deployed in remote regions which do not have 
access to skilled and experienced pathologists. Timely 
diagnosis can help design a smooth recovery path and 
eventually bring down the mortality rate. The integration of  
an explainable AI module via the GradCAM technique will 
offer an added advantage to encourage the usage of AI 
systems not only in the healthcare experts but also the 
patients. 

However, this study is currently limited to the detection 
of only the P. falciparum parasite. Malaria can be caused by 
five different species of the parasite. The system once 
extended to support all the five species in a multi-class 
classification approach would become a complete end-to-
end malaria detection system. 

 

V. CONCLUSION 

A series of experiments were conducted as part of this 
study building end-to-end deep learning systems for 
diagnosing malaria from thin blood smear whole slide 
images. Several custom network architectures were designed 

TABLE 9 
Result Comparison 

Model F1 Score Accuracy Precision Sensitivity Specificity MCC 

EfficientNet 
Snapshot  
Ensemble  

99.37 99.37 99.52 99 99 98.74 

EfficientNet 
Transfer  
Learning 

97.78 97.77 97.97 98 98 95.55 

Rahman et al., 
2019 

97.09 97.77 97.19 -- -- 94.42 

Vijayalakshmi  
and B, 2019 

91.66 93.13 89.95 93.44 92.22 -- 

Rajaraman et 
al., 2019 

99.5 99.5 99.8 -- -- 99 

Rajaraman et 
al., 2018b 

98.7 98.6 -- 98.1 99.2 97.2 

Yang et al., 
2019 

80.81 97.26 78.98 82.73 98.39 -- 

Bibin et al., 
2017 

89.66 96.3 -- 97.60 95.92 -- 

Gopakumar et 
al., 2017 

-- 97.37 -- 97.06 98.5 73.05 

Liang et al., 
2016 

97.36 97.37 97.73 96.99 97.73 94.75 
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along with transfer learning approach and snapshot ensemble 
technique. The healthcare domain where lack of proper 
annotated data is often considered as a limitation, transfer 
learning using state-of-the-art models which have a good 
knowledge base and serve as an efficient alternative to 
designing high performance deep learning models for the 
healthcare domain. In the transfer learning experiment, 
EfficientNet-B0 model turned out to be most efficient with a 
f1 score of 97.95% and MCC 95.89%. The ensemble 
learning implemented a relatively new approach of snapshot 
ensemble where multiple snapshots of the model are 
recorded during the training phase. Every snapshot is 
different from the other as they tend to converge at different 
local minima points recording unique set of weights and 
biases. Two different model architectures - a custom model 
and the Efficientnet-B0 model were setup to extract five 
distinct snapshots respectively. Many different ensembles 
were created using various combination of the snapshots 
from each architecture. Each ensembled model proved to be 
stronger than the single model. The EfficientNet-B0 
ensemble with the final two snapshots gave the best 
classification scores achieving a f1 score of 99.37% and 
MCC score of 98.74%. This model also has the least number 
of false predictions meaning it generalizes well on unseen 
data and proves to be a great model in developing better 
clinical solution for malaria detection. Also, the fact that we 
get ensembled model by training only one model not only 
removes the need of high efficiency computational resources 
but also saves valuable amount of time required to train 
multiple large models to combine and create ensembles. The 
GradCAM experiment shows where exactly a model looks 
in the image to arrive at a decision. It is observed that the 
model activates the region around the parasite in the infected 
cells and utilizes it to differentiate the parasitized cells from 
unparasitized cells. The GradCAM visualizations make the 
models more transparent, explainable, and trustworthy 
which are very much essential for deploying AI based 
models in the healthcare network. 

This study considers only the P. falciparum infected cells 
for malaria classification. Since, there are five different 
species of the malarial parasite namely, P. falciparum, P. 
malariae, P. ovale, P. vivax and P. knowlesi. The 
experiments conducted in this study can be extended to 
detect the other species of the parasite which can be taken up 
as the future work. Another important factor to consider the 
adoption of AI systems into healthcare practices is testing. 
Validating the model with external datasets i.e., samples 
from a different set of population or distribution would give 
the most correct measure for generalizability of the model. 
The model can be fine-tuned on the new population 
accordingly. 

 
Code Repository: The python codes for the experiments in 
this study can be found at - 
https://github.com/sauravmishra1710/Malaria-Detection-
Using-Deep-Learning-Techniques. 
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