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Abstract Dengue fever remains a pressing public health challenge in major Indonesian cities, including 

Semarang. The complex interplay of heterogeneous demographic structures and built-environment 

characteristics generates spatially uneven transmission risks, while conventional risk-mapping 

approaches often fail to capture the probabilistic nature of these risks at fine-scale administrative levels, 

limiting their utility for targeted interventions. This study aims to develop a robust, replicable framework 

for dengue risk stratification that more accurately identifies localized high-risk areas and supports 

evidence-based public health decision-making. The research introduces a probabilistic clustering 

approach using Gaussian Mixture Models (GMM) to move beyond rigid partitioning methods, while 

simultaneously integrating multi-year incidence data (2021–2024) with eighteen multidimensional urban 

indicators across 177 sub-districts (kelurahan). This combined contribution advances methodological 

rigor by accommodating overlapping data distributions and probabilistic cluster memberships, and 

provides a nuanced, evidence-driven tool for stratifying dengue risk and guiding hyper-local interventions. 

Several GMM configurations were evaluated using the Bayesian Information Criterion (BIC) to determine 

the optimal number of clusters. The BIC value declined markedly when the number of clusters increased 

from two to three, indicating a substantial improvement in model fit. Further increases yielded only 

marginal gains, and the lowest BIC was achieved at three clusters, representing the most parsimonious 

and effective solution. Internal validation confirmed that the cluster structure robustly captured 

epidemiological variance despite the inherent heterogeneity of urban spatial data. Cluster 2 emerged as a 

critical high-risk epicenter, geographically limited yet characterized by consistently elevated incidence, 

pronounced temporal variability, and extreme values. The proposed GMM-based framework demonstrates 

that dengue risk in Semarang is concentrated within localized foci of heightened vulnerability rather than 

uniformly distributed. Ultimately, the methodology is replicable in other complex tropical urban 

environments, thereby strengthening both academic rigor and practical public health decision-making. 

Keywords Dengue risk stratification; Gaussian mixture model; Bayesian information criterion; Urban built-
environment; Spatial epidemiology.

I. Introduction  

Dengue fever remains a critical public health threat in 
Semarang, one of Indonesia’s major metropolitan 
areas, where rapid urbanization has intensified the 
complex interplay between demographic factors and 
the built environment, leading to spatially uneven 
transmission risks [1]. Semarang City has consistently 
reported a substantial number of dengue cases over 
recent years, with marked variability across sub-
districts, reflecting persistent spatial heterogeneity in 
transmission risk. In this diverse urban landscape, 
dengue transmission is often highly localized, with 
certain sub-districts experiencing persistently higher 

incidence rates than their neighbors due to varying 
socio-environmental vulnerabilities [2]. This spatial 
heterogeneity poses a significant challenge for 
surveillance and control, as city-wide data aggregation 
frequently masks critical high-risk zones that require 
prioritized intervention [3][4]. Consequently, fine-scale 
identification of dengue risk patterns at the sub-district 
level is essential for implementing targeted vector 
control and evidence-based public health strategies [5].  

A wide range of spatial and spatiotemporal 
analytical approaches have been proposed to examine 
dengue risk patterns in complex urban environments. 
Geographic information system (GIS)-based analyses 
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and spatial statistical methods have been widely used 
to detect dengue clusters and hotspots, enabling 
visualization of high-risk areas [6]. Systematic reviews 
have further emphasized the integration of 
epidemiological data with demographic and 
environmental indicators to improve dengue risk 
mapping in complex urban settings [7]. In Southeast 
Asia, where rapid urbanization continues to reshape 
socio-environmental conditions, such integrative 
spatial approaches have become increasingly relevant 
[8][9]. 

Beyond traditional spatial analysis, machine 
learning techniques have recently been applied to 
dengue studies, primarily focusing on incidence 
forecasting and early warning systems [10]. Several 
studies reported promising predictive accuracy using 
supervised learning algorithms when sufficient labeled 
data were available [11][12]. However, these 
forecasting-oriented models are often restricted to 
temporal predictions and require predefined outcome 
labels, which limits their usefulness for exploratory 
spatial risk stratification where the goal is to identify 
latent groupings across heterogeneous units [13]. 
Furthermore, supervised models are less suitable for 
uncovering overlapping spatial risk profiles in multi-
dimensional urban datasets, where transmission 
boundaries are rarely clearly defined  [14][15]. 

Despite these advances, existing dengue risk 
studies still exhibit significant limitations. Many 
clustering-based approaches rely on distance-based 
algorithms that assume homogeneous cluster shapes 
and rigid group assignments [16]. Such fixed 
partitioning oversimplifies the transitional or 
overlapping risk patterns commonly observed in dense, 
highly mobile urban environments. Furthermore, 
standard clustering approaches often struggle to 
maintain robustness when faced with correlated noise 
and the complex data structures inherent in multi-
dimensional spatial datasets [17]. Additionally, many 
existing studies rely on single-year incidence 
observations, which are highly sensitive to short-term 
outbreak dynamics and may fail to capture persistent 
risk trends. As a result, there remains a need for a 
flexible and probabilistic clustering framework that can 
capture multi-year dengue risk heterogeneity at fine 
administrative scales. These limitations underscore the 
need for a flexible, model-based clustering approach 
capable of accommodating heterogeneous cluster 
geometries, overlapping risk profiles, and interrelated 
multi-dimensional urban indicators. 

To address this gap, this study proposes a dengue 
risk stratification framework based on the Gaussian 
Mixture Model (GMM). GMM is a model-based 
clustering approach that represents data as a mixture 
of probability distributions, allowing for clusters with 
different shapes, sizes, and orientations while 

assigning probabilistic membership rather than rigid 
class labels [18]. This characteristic makes GMM 
particularly well-suited for multi-dimensional urban 
dengue data, where risk patterns are influenced by 
interacting demographic and built-environment factors 
that frequently overlap across sub-district boundaries 
[19]. In addition, the Bayesian Information Criterion 
(BIC) is employed to objectively determine the optimal 
number of dengue risk clusters, effectively reducing the 
risk of overfitting and subjective selection bias [20]. 

Accordingly, this study focuses on stratifying 
dengue risk at the sub-district level in Semarang City 
through a probabilistic clustering framework based on 
the Gaussian Mixture Model. Multi-year dengue 
incidence rate data (IR-DD+DBD) from 2021 to 2024 
are integrated with eighteen demographic and built-
environment indicators to characterize persistent 
spatial heterogeneity across 177 urban sub-districts. 

In this study, urban conditions are represented 
using a set of demographic indicators, built-
environment characteristics, and the availability of 
public facilities at the urban sub-district level. 

The contributions of this study are as follows: 

1. integrating multi-year dengue incidence data 
with multi-dimensional demographic and built-
environment indicators at the sub-district level; 

2. applying a Gaussian Mixture Model to capture 
heterogeneous and overlapping dengue risk 
patterns in an urban environment; 

3. employing the Bayesian Information Criterion 
to objectively determine the optimal number of 
dengue risk clusters; and 

4. providing interpretable fine-scale dengue risk 
profiles to support targeted surveillance and 
vector control planning by local health 
authorities. 

The paper is organized as follows: first, the study 
area and methodology are described; then, clustering 
results are presented; discussion follows; and 
concluding remarks conclude. 

 

II. Method  

A. Study Area and Dataset  

Semarang City is a major metropolitan area in Central 
Java, Indonesia, characterized by rapid urbanization 
and a heterogeneous population distribution that 
significantly influences dengue transmission dynamics. 
The city’s diverse topography, spanning from low-lying 
coastal areas in the north to hilly terrain in the south, 
creates a complex urban environment with varying 
ecological conditions. Administratively, Semarang City 
consists of 177 urban sub-districts level, which serve 
as the primary unit of analysis in this study. This fine-
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scale administrative approach is essential for capturing 
the localized nature of dengue outbreaks in densely 
populated urban areas. 

The dataset integrates multi-year dengue incidence 
rate data (IR-DD+DBD) for the period 2021–2024 with 
eighteen demographic and built-environment indicators 
representing population structure, residential density 
proxies, and public facilities at the sub-district level. By 
incorporating data across four years, the analysis 
effectively captures the temporal persistence of dengue 
risk patterns while minimizing the impact of short-term 
epidemic fluctuations [3][9]. The selection of these 
demographic and built-environment indicators follows 
established epidemiological research emphasizing the 
role of urbanization, population density, and 
environmental context in shaping dengue transmission 
risk [21][6][7].  

B. Variable Selection and Description 

The initial dataset comprised dengue incidence data 
from 177 urban sub-districts in Semarang City, 
combined with approximately 98 demographic, 
infrastructural, and public facility indicators obtained 
from secondary administrative sources. These 

indicators reflect various aspects of urban structure, 
population distribution, residential density, and public 
service availability, which are widely associated with 
dengue transmission dynamics in urban environments  
[6][7][9]. However, high-dimensional administrative 
datasets often contain significant redundancy and 
multicollinearity, which can destabilize unsupervised 
clustering models. Therefore, a rigorous variable 
screening process was conducted to identify a subset 
of indicators that are both epidemiologically meaningful 
and statistically appropriate for the Gaussian Mixture 
Model framework [11][22][23][24].  

The variable selection process involved a multi-
stage evaluation: descriptive statistical analysis to 
assess data completeness and variability; correlation-
based evaluation to mitigate redundancy among highly 
correlated indicators; and domain relevance 
assessment based on established dengue risk factors. 
Specifically, indicators with extremely low variability or 
those exhibiting strong collinearity (r > 0.8) were 
scrutinized or consolidated to ensure analytical 
robustness [24][25]. In cases of strong collinearity, one 
of the correlated variables was retained based on 
epidemiological relevance and data completeness to 

Table 1. Descriptive Statistics of Selected Demographic and Built - Environment Variables (n = 177 Sub - 

Districts) 

Variable Mean SD Min Max 

Area Size 25.68 18.44 5.17 58.27 

Population Density 6719.92 3683.95 1211.94 12264.8 

Total Population 9437.17 6450.75 584 37499 

Number of DBD Patients (2024) 1.82 2.17 0 11 

Number of DBD Deaths (2024) 0.03 0.18 0 1 

Number of Dengue Patients (2024) 37.73 28.51 0 144 

Larvae-Free Index (ABJ, %) 93.88 4.1 71.98 98.9 

Number of Parks 17.53 16.43 1 49 

Number of Neighborhood Units (RT) 51.42 39.71 4 292 

Number of Community Units (RW) 9.3 9.66 1 89 

Number of Family Heads 3002.3 1987.02 184 11224 

Number of Primary & Secondary Students 13.59 7.78 2 44 

Total Students 1496.4 1332.06 46 8281 

Number of University Students 0.37 0.77 0 5 

Number of Health Workers 3.25 3.09 0 20 

Number of Shops/Markets/Stalls 110.14 86.18 6 426 

Number of Public Facilities 7.19 20.08 0 254 

Total Worship Facilities 35.08 21.58 5 166 
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avoid redundancy while preserving interpretability. This 
approach balances model interpretability with the need 
to capture the multi-dimensional nature of the urban 
built environment. This combined statistical and 
domain-driven screening ensures that the retained 
variables are both epidemiologically meaningful and 
statistically suitable for stable Gaussian Mixture Model 
clustering. 

As a result, eighteen demographic and built-
environment variables were retained for further 
analysis. These variables represent population 
structure, residential density proxies (e.g., households 
and neighborhood units), public facilities (e.g., 
educational, religious, and commercial spaces), and 
environmental amenities (e.g., green spaces). These 
18 indicators serve as multidimensional input for the 
GMM clustering, providing a comprehensive profile of 
the socio-environmental landscape across Semarang's 
urban sub-districts. Similar categories of variables have 
been reported as influential determinants of dengue 
risk in previous urban studies [6][7][12][25].  

This variable selection stage focused on identifying 
relevant urban indicators, whereas the subsequent 
feature engineering stage focused on constructing 
temporal dengue incidence features used as inputs to 
the clustering model. Table 1 presents the descriptive 
statistics of the selected eighteen variables across 177 
urban sub-districts. The selected indicators provide a 
comprehensive representation of urban heterogeneity 
while maintaining model stability and interpretability in 
the subsequent Gaussian Mixture Model clustering 
process [11][26]. 

C. Data Preprocessing 

Prior to clustering analysis, a structured preprocessing 
pipeline was implemented to ensure the consistency, 
robustness, and comparability of all variables. The 
initial stage involved data cleaning and column 
harmonization to standardize variable names and 
numeric formats across the 177 sub-districts. Sub-
district identifiers were utilized exclusively for labeling 
and spatial mapping; thus, they were excluded from the 
model-fitting process to prevent geographical bias in 
the unsupervised learning stage. 

Missing values were handled using median 
imputation, a robust technique particularly suited for 
public health datasets where extreme values or outliers 
might otherwise distort the central tendency 
[27][28][29]. Median imputation was selected for its 
robustness to skewed distributions and the common 
presence of outliers in urban and epidemiological data. 
The proportion of missing values was relatively low 
across variables, ensuring that the imputation process 
did not substantially distort the original data structure. 
To account for the diverse numerical scales across the 
18 indicators, ranging from population counts to 
percentages, all variables were normalized using Z-

scores. This transformation ensures that each feature 
contributes equally to the Gaussian Mixture Model and 
prevents variables with larger magnitudes from 
dominating the cluster formation [30][31]. Finally, 
exploratory correlation analysis was performed to 
identify and mitigate high multicollinearity, ensuring a 
stable and interpretable clustering outcome that truly 
reflects the underlying spatial risk structures [32]. 

D. Feature Construction 

After selecting urban indicators, a separate feature 
engineering step was performed to construct temporal 
dengue incidence features. While variable selection 
focused on identifying relevant urban characteristics, 
feature engineering was used to derive multi-year 
incidence rate variables that capture the temporal 
dynamics of dengue transmission. The final feature 
matrix for the clustering analysis comprises 22 
variables, integrating 18 demographic and built-
environment indicators with 4 annual dengue incidence 
rate variables (IR-DD+DBD) spanning 2021 to 2024. 
This multidimensional construction enables the model 
to characterize each sub-district not only by its current 
socio-environmental profile but also by its historical 
epidemiological trajectory. The incorporation of multi-
year incidence data represents a deliberate strategy to 
strengthen the robustness of risk stratification. By 
accounting for transmission patterns over a four-year 
period, the framework can identify persistent risk 
hotspots while reducing sensitivity to episodic outbreak 
spikes or year-specific anomalies that often distort 
single-year observations [3][12]. This approach 
ensures that the resulting strata capture stable, long-
term dengue transmission risks rather than transient 
fluctuations, thereby providing a more reliable 
foundation for sustainable public health planning 
[33][34]. 

E. Gaussian Mixture Model Clustering 

Dengue risk stratification in this study is conducted using 

the Gaussian Mixture Model (GMM), a probabilistic, 

model-based clustering technique that represents 

observations as a finite mixture of multivariate Gaussian 

distributions. In contrast to conventional distance-based 

algorithms such as K-Means, which enforce rigid and 

often spherical cluster boundaries, GMM provides 

greater flexibility by accommodating clusters with 

heterogeneous shapes, scales, and orientations. This 

capability is particularly critical in urban epidemiological 

contexts, where dengue risk profiles frequently overlap 

across administrative units and exhibit substantial 

spatial and socioeconomic heterogeneity [11][14][35]. 

Model-based clustering approaches, including GMM, 

have been widely reported as effective in uncovering 

latent risk structures in public health and spatial 

epidemiology analyses, especially when underlying 

class memberships are not sharply separable [36][37]. 
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These characteristics make GMM an appropriate 

methodological choice for dengue risk stratification at 

the sub-district level. This study employs the Gaussian 

Mixture Model (GMM) as a probabilistic framework to 

stratify urban sub-districts based on multidimensional 

dengue risk profiles. The GMM assumes that the 

observed data 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} are generated from a 

finite mixture of 𝐾 multivariate Gaussian distributions, 

where each 𝑥𝑖 ∈ 𝑅𝐷  represents the standardized 

feature vector of a sub-district [11][37]. Within this 

framework, the probability density function of an 

observation 𝑥ᵢ is formulated as a weighted sum of 

Gaussian components, as shown in Eq. (1)[38]: 

𝑝(𝑥𝑖) = ∑ 𝜋𝑘𝑁(𝑥𝑖|𝜇𝑘, ∑𝑘)𝐾
𝑘=1        (1) 

where πₖ denotes the mixing proportion of the k-th 

component, satisfying ∑_{𝑘 = 1}^{𝐾} 𝜋ₖ =  1, while 𝜇ₖ 
and 𝛴ₖ represent the mean vector and covariance matrix 

of the corresponding Gaussian distribution [11][39]. The 

multivariate Gaussian component 𝒩(𝑥ᵢ | 𝜇ₖ, 𝛴ₖ) is 

defined in Eq. (2) [40] as follows: 

𝑁(𝑥𝑖|𝜇𝑘, ∑𝑘) =
1

(2𝜋)
𝐷
2 |∑𝑘|

1
2

𝑒𝑥𝑝 [−
1

2
(𝑥𝑖 −

𝜇𝑘)𝑇∑𝑘−1(𝑥𝑖 − 𝜇𝑘)]        (2) 

The set of model parameters 𝛩 =  {𝜋ₖ, 𝜇ₖ, 𝛴ₖ} is 

estimated using the Expectation–Maximization (EM) 

algorithm, which iteratively maximizes the log-likelihood 

of the observed data [11][37], as shown in Eq. (3)[38]: 

ℓ(⊖) = ∑ log[∑ 𝜋𝑘𝑁(𝑥𝑖|∑𝑘)𝐾
𝑘=1 ]𝑛

𝑖=1                (3) 

Unlike deterministic clustering methods such as K-

Means, the GMM provides a soft clustering mechanism 

that allows each sub-district to be associated with 

probabilistic cluster memberships rather than rigid class 

assignments [39][41]. This property is particularly 

relevant in Semarang’s urban context, where 

demographic and environmental risk factors often 

overlap across administrative boundaries. By explicitly 

modeling uncertainty and transitional risk patterns, the 

probabilistic formulation of GMM offers a more flexible 

and realistic representation of dengue transmission 

dynamics at the sub-district level. The optimal number of 

mixture components 𝐾 is subsequently determined 

using the Bayesian Information Criterion (BIC), as 

described in the following section. This approach not 

only ensures statistical rigor but also reflects a thoughtful 

balance between model complexity and interpretability, 

acknowledging the human need for clarity in 

understanding data-driven insights. 

F. Determination of Optimal Number of Clusters  

Model selection was guided by the Bayesian Information 

Criterion (BIC), which evaluates the trade-off between 

model goodness-of-fit and model complexity in a 

statistically objective manner, and helps prevent 

overfitting in model-based clustering [39][11]. Several 

GMM configurations with different numbers of 

components were evaluated, and the model with the 

lowest BIC value was selected as the optimal solution. 

The formula can be written as Eq. (4)[42]. 

𝐵𝐼𝐶 = −2𝒍𝒏(𝐿^) + 𝑝𝒍𝒏(𝑛)                 (4) 

Where 𝐿 denotes the maximum likelihood of the fitted 

GMM, 𝑝 represents the number of estimated 

parameters, and 𝑛is the number of urban sub-districts. 

Information-theoretic criteria such as BIC are widely 

used in model-based clustering to ensure parsimonious 

model selection and to avoid unnecessary model 

complexity [10][37][41]. 

G. Cluster Labeling and Risk Interpretation  

Following clustering, the cluster labels were reordered 

by the mean 2024 dengue incidence rate to ensure 

consistent interpretation of dengue risk levels. Clusters 

were subsequently categorized from low to high risk. 

Cluster profiling was performed by calculating mean 

values of demographic, built-environment, and dengue 

incidence variables within each cluster. This step 

facilitates interpretation of characteristic urban features 

associated with different dengue risk levels and supports 

targeted public health interventions [6][19]. Temporal 

patterns of dengue incidence across clusters were 

further examined to assess the persistence and 

evolution of dengue risk during the 2021–2024 period 

[3][12]. 

H. Methodological Workflow 

The overall methodological workflow of this study is 
illustrated in Fig. 1, which summarizes the sequential 
analytical steps implemented to achieve dengue risk 
stratification at the sub-district level. The workflow 
begins with multi-source data collection, including 
dengue incidence rate data (IR-DD+DBD) for the 
period 2021–2024 and selected demographic and built-
environment indicators for all urban sub-districts in 
Semarang City. Following data collection, a data 
preprocessing stage was conducted to ensure 
consistency and reliability of the dataset. This stage 
includes data cleaning and harmonization, handling  
missing values using median imputation, feature 
standardization through z-score normalization, and 
exploratory correlation analysis to reduce redundancy 
among highly correlated variables. These 
preprocessing steps are essential to ensure balanced 
feature contribution and stable clustering performance. 
Subsequently, probabilistic clustering was performed 
using the Gaussian Mixture Model (GMM) to capture 
heterogeneous and overlapping dengue risk patterns 
across urban sub-districts. To objectively determine the 
optimal number of clusters, the Bayesian Information 
Criterion (BIC) was used to evaluate multiple GMM 
configurations with varying numbers of components. 
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The model with the lowest BIC value was selected as 
the optimal clustering solution. Finally, the resulting 
clusters were interpreted to generate dengue risk 
stratification profiles, enabling the identification of 
persistent spatial risk patterns across sub-districts. The 
complete workflow presented in Fig. 1 ensures 
methodological transparency and provides a structured 
framework for integrating multi-year epidemiological 
data with probabilistic clustering techniques to support 
fine-scale dengue risk assessment. 

 

III. Result 

A. Determination of Optimal Number of Clusters 

The optimal number of clusters for dengue risk 
stratification was determined using the Bayesian 
Information Criterion (BIC). Several Gaussian Mixture 
Model (GMM) configurations with different numbers of 
components were evaluated to identify the model that 
provides the best balance between model fit and 
complexity. 

As shown in Fig. 2, the BIC value decreases 

substantially when the number of clusters increases 

from two to three, indicating a notable improvement in 

model fit. However, further increasing the number of 

clusters beyond three results in only marginal reductions 

in BIC, suggesting diminishing returns in model 

performance. The minimum BIC value is achieved at 

three clusters, indicating that this configuration 

represents the most parsimonious and optimal 

clustering solution for the dataset. 

B. Cluster Validation Using Silhouette Coefficient 

To further ensure that the identified clusters exhibit 
measurable internal structure, an internal cluster 
validation was conducted using the silhouette 
coefficient. This metric assesses the degree of 
similarity among observations within the same cluster 
relative to those in neighboring clusters. The resulting 
silhouette score of 0.234 indicates a moderate but 
acceptable level of cluster separation, currently 
commonly observed in unsupervised clustering applied 
to heterogeneous urban epidemiological data. This 
result suggests that, despite partial overlap between 
clusters, the overall clustering structure captures 
meaningful distinctions in dengue risk characteristics 
across sub-districts. 

C. Distribution of Dengue Risk Clusters  

Based on the optimal three-component GMM 
configuration, the 177 urban sub-districts in Semarang 
City were stratified into three distinct dengue risk 

 
Fig. 1. Methodological workflow for dengue risk 
stratification using Gaussian Mixture Model and 
Bayesian Information Criterion. 
 

 

 

Fig.  2. Bayesian Information Criterion values 
obtained from Gaussian Mixture Model 
clustering for different numbers of clusters 
 

Table 2. Distribution of urban sub-districts 

across dengue risk clusters. 

Cluster Number of Sub-District 

0 92 

1 77 

2 8 
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clusters. The resulting distribution of sub-districts 
across these clusters is summarized in Table 2.  

Cluster 0 contains 92 sub-districts, Cluster 1 includes 

77 sub-districts, and Cluster 2 comprises 8 sub-districts. 

The unequal distribution across clusters indicates 

substantial spatial heterogeneity in dengue risk levels 

among urban sub-districts. The relatively small size of 

Cluster 2 suggests that high dengue risk is concentrated 

in a limited number of localized sub-districts rather than 

being uniformly distributed across the city. The spatial 

distribution of dengue risk clusters further indicates that 

the high-risk cluster (Cluster 2) is geographically limited 

and concentrated within a small number of urban sub-

districts in Semarang City. These sub-districts are 

predominantly located in densely built-up urban areas 

characterized by high population concentration and 

intensive human activity. In contrast, low-risk sub-

districts (Cluster 0) are more widely distributed across 

the city, including areas with lower neighborhood density 

and more residential land-use patterns. This spatial 

concentration suggests that dengue risk in Semarang 

City is not uniformly distributed but rather clustered in 

specific urban pockets that exhibit heightened 

vulnerability.  

Fig. 3 illustrates the spatial distribution pattern of 

dengue risk clusters derived from the Gaussian Mixture 

Model. The visualization employs an abstract spatial 

projection to highlight the heterogeneity and relative 

concentration of clusters rather than precise 

administrative boundaries. The high-risk cluster (Cluster 

2) appears spatially limited, concentrated within a small 

number of urban sub-districts, while low-risk (Cluster 0) 

and intermediate-risk (Cluster 1) clusters are more 

widely distributed. This pattern confirms that dengue risk 

in Semarang City is spatially heterogeneous and 

localized within specific urban pockets. Although this 

visualization does not represent exact administrative 

boundaries, it provides a clear spatial context for 

identifying localized high-risk sub-districts relevant for 

targeted public health interventions. Table 3 presents 

the mean values of demographic, built-environment, and 

multi-year dengue incidence indicators for each 

identified cluster. Substantial structural differences are 

evident across the three dengue risk strata. Cluster 0 

(low risk) is characterized by lower population size, 

fewer neighborhood units (RT/RW), and lower 

concentrations of commercial and public facilities, 

indicating relatively stable residential environments. In 

contrast, Cluster 2 (high risk) exhibits markedly higher 

mean values across population-related indicators, 

neighborhood density proxies, and commercial facilities, 

reflecting intense human mobility and interaction. 

Cluster 1 demonstrates intermediate characteristics, 

suggesting a transitional urban structure between low- 

and high-risk settings. 

D. Temporal Characteristics of Dengue Incidence 

(2021–2024) 

To examine temporal differences in dengue dynamics 
among the identified clusters, average dengue incidence 
rates from 2021 to 2024 were analyzed for each cluster. 
The temporal trends are illustrated in Fig. 4. , Cluster 2 
consistently exhibits the highest average dengue 
incidence rates across all 4 years, indicating a 
persistent high-risk pattern. In contrast, Cluster 0 
demonstrates relatively low and stable incidence levels 
throughout the observation period. Cluster 1 shows 
intermediate incidence values with greater variability, 
reflecting a transitional risk profile. These results 

 
 
Fig. 3. Spatial distribution pattern of dengue 
risk clusters based on GMM clustering 

 
Fig. 4. Average dengue incidence rate trends for 

each identified cluster during the 2021–2024 
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indicate that the GMM-based clustering captures not 
only spatial differentiation but also meaningful temporal 
patterns of dengue incidence. 

E. Spatial Heterogeneity and Cluster Profiling  

Further analysis was undertaken to examine the 

distributional characteristics of dengue incidence within 

each identified cluster. The temporal distribution of 

dengue incidence rates across clusters for each 

observation year is illustrated in Fig. 5. As shown, 

Cluster 2 consistently exhibits the highest median 

incidence rates and the widest interquartile ranges 

across all years, indicating persistently elevated dengue 

risk and substantial intra-cluster heterogeneity. In 

contrast, Cluster 0 displays tightly concentrated 

distributions with low median values, reflecting relatively 

stable and consistently low dengue transmission levels. 

Cluster 1 occupies an intermediate risk stratum, 

characterized by moderate median incidence rates and 

comparatively broader dispersion, suggesting 

transitional risk dynamics. The presence of extreme 

values within Cluster 2 further highlights localized sub-

districts experiencing exceptionally high dengue 

incidence, underscoring the existence of concentrated 

hotspots that deviate markedly from the broader 

epidemiological patterns observed across the city. 

Beyond differences in median values, the high-risk 

cluster (Cluster 2) exhibits pronounced extreme dengue 

incidence levels. In the 2024 observation year, the mean 

dengue incidence rate (IR DD+DBD) in cluster 2 

reached 104.75, which is nearly five times higher than 

that observed in the low-risk cluster. Moreover, a small 

number of sub-districts within cluster 2 recorded 

substantially higher incidence values, as reflected by the 

wide interquartile range and the presence of upper-end 

outliers in Fig. 5. These extreme values indicate 

localized hyper-endemic conditions within a small 

number of urban sub-districts, highlighting that dengue 

Table 3. Mean Values of Demographic, Built-Environment, and Dengue Incidence Variables by Cluster. 

Variable Cluster 0 
(Low Risk) 

Cluster 1 
(Intermediate Risk) 

Cluster 2 
(High Risk) 

Total Population 5331.21 12421.48 27931.75 

Female Population 2718.60 6262.12 14152.00 

Male Population 2633.98 6168.69 13941.63 

Number of Family Heads 1751.89 3905.71 8686.63 

Number of Neighborhood Units (RT) 34.25 63.42 133.50 

Number of Community Units (RW) 5.63 12.97 16.13 

Number of Early Childhood Schools (PAUD) 4.96 9.81 22.88 

Total Worship Facilities 22.88 43.83 91.13 

Number of Mosque 4.15 8.56 15.75 

Number of Langgar 12.55 23.44 49.88 

Primary & Secondary Education Facilities 9.62 16.23 33.75 

Number of Elementary Schools 2.34 3.26 6.13 

Number of Shops/ Market/ Stalls 73.04 139.99 249.38 

Area of Green/ Open Space  75464.59 29868.53 24271.62 

Grocery Stores 35.86 76.88 119.50 

Mini Markets 2.68 4.19 9.13 

IR DD+DBD 2021 4.78 16.14 44.38 

IR DD+DBD 2022 15.11 47.83 110.50 

IR DD+DBD 2023 10.76 30.43 81.50 

IR DD+DBD 2024 21.71 54.12 104.75 

 

 
 
Fig. 5. Distribution of dengue incidence rates 
across clusters for each observation year from 
2021 to 2024 
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risk in Semarang City is not only elevated in Cluster 2 

but also highly heterogeneous in magnitude.  

 

IV. Discussion 

A. Interpretation of Dengue Risk Clusters  

A Gaussian Mixture Model (GMM) was employed to 
stratify dengue risk in Semarang City, with model 
selection optimized based on the Bayesian Information 
Criterion (BIC). As illustrated in Fig. 2, the most 
significant reduction in the BIC value occurred at the 
transition from two to three clusters k = 3. This result 
suggests that a three-cluster configuration provides the 
most parsimonious and representative framework for 
capturing the urban risk heterogeneity in the study area 
without introducing unnecessary model complexity. 

The spatial distribution of clusters shown in Fig. 3 
and summarized in Table 2 indicates that the dengue 
burden is not uniformly distributed across the city but is 
heavily concentrated in eight specific sub-districts 
classified as Cluster 2. Although this cluster comprises 
only a small fraction of the total areas, its Incidence 
Rate (IR) remained consistently high throughout the 
2021-2024 period. As shown in Fig. 4, Cluster 2 
reached a peak IR of 104.75 in 2024, approximately 4.8 
times higher than the IR of Cluster 0 (21.71). This 
persistent temporal pattern confirms that these eight 
sub-districts function as the primary epicenters of 
dengue transmission in Semarang City, rather than 
experiencing transient case surges. 

The demographic and built-environment indicators 
presented in Table 3 provide a deeper explanation for 
the elevated risk in Cluster 2. This cluster exhibits a 
high average population of 27931.75 residents per sub-
district, substantially exceeding Cluster 0’s average of 
5331.21. Furthermore, Cluster 2 is characterized by 
intensive economic activity, with an average of 249.38 
shops and markets, alongside dense residential 
structures averaging 133.50 neighborhood units (RT) 
per sub-district. This convergence of high population 
density, commercial activity, and compact settlements 
likely increases contact between humans and Aedes 
aegypti mosquitoes, thereby accelerating local virus 
transmission [6][7]. 

From a public health operational perspective, the 
substantial disparities in IR values between clusters, as 
reflected in the data distribution in Fig. 5, suggest that 
a uniform, city-wide intervention approach is no longer 
effective. The persistently high incidence in Cluster 2, 
despite the implementation of routine control programs, 
points to the presence of structural risk factors. 
Therefore, dengue control efforts in these high-risk 
areas require more targeted strategies, including 
improvements to environmental infrastructure and 
residential area planning, to complement standard 

interventions such as fogging and larval source 
reduction. 

B.  Temporal Stability and Transitional Risk 

Dynamics 

In terms of methodological effectiveness, the use of the 
Gaussian Mixture Model (GMM) in this study provides 
a more flexible clustering approach than conventional 
rigid clustering methods. Unlike algorithms that force 
each region into a specific cluster (hard clustering), 
GMM allows each sub-district to have a membership 
probability. This enables the model to better represent 
heterogeneous urban areas where risk boundaries 
often overlap. Based on the evaluation results, the 
GMM model applied to Semarang City data produced 
a Silhouette Score of 0.234. Although urban 
epidemiological data are highly complex, this value 
indicates a sufficient level of cluster separation. 
Compared with the hierarchical approach used by 
Lowe et al. [1], which applies strict risk classification, 
the probabilistic GMM approach is more adaptable in 
handling areas with transitional risk characteristics 
(Cluster 1), thereby reducing bias in defining priority 
zones. Comparison with previous studies summarized 
in Table 4 highlights the novelty of this research. The 
study by Feliciano et al. [9] employed spatial scan 
statistics to identify significant dengue risk clusters, 
with a primary focus on hotspot detection. In contrast, 
the GMM model in this study enables more detailed risk 
stratification at the sub-district administrative level by 
simultaneously considering 18 multidimensional 
indicators.  

Furthermore, unlike the study by Yin et al. [6], which 
emphasized meteorological variables, the present 
study demonstrates that integrating built environment 
characteristics and settlement density contributes to 
more stable dengue risk patterns for long-term 
planning. The probabilistic nature of the GMM 
approach also helps reduce potential classification 
errors caused by rigid cluster boundaries. This 
characteristic has important practical implications for 
public health planning, as it supports a more precise 
and targeted allocation of dengue control resources in 
Semarang City based on the degree of risk probability 
in each region. 

C. Comparison with Previous Dengue Risk Studies 

A methodological comparison between the proposed 
GMM framework and previous studies is summarized 
in Table 4. Unlike the Bayesian Hierarchical Model 
approach used by Lowe et al. [1] and do Carmo et al. 
[9], which focused on relative risk (RR) and correlations 
between social determinants in Brazil, this study 
applies a Gaussian Mixture Model (GMM) to capture 
the probabilistic nature of dengue risk. The use of a 
GMM allows for the identification of transition areas 
characterized by overlapping clusters, an aspect often 
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overlooked in rigid partitioning models. From a spatial 
perspective, this study aligns with the systematic 
review conducted by Yin et al. [6], which employed 
multidimensional urban indicators to capture risk 
heterogeneity within complex built environments. In 
contrast, while the Bangladesh study by Liu et al. [12] 
prioritized the accuracy of temporal predictions 
(forecasting) through machine learning approaches 
such as XGBoost, the present Semarang study places 
greater emphasis on spatial risk stratification at the 
micro-scale (sub-district level).  A key distinction also 
emerges in the selection of input variables. Whereas 
most reference studies [1][12] rely predominantly on 
meteorological parameters such as temperature and 
rainfall, the proposed model demonstrates that dengue 
risk stability in a large city like Semarang can be 
robustly identified through 18 structural urban 
indicators. This finding underscores that, in high-
density urban areas, built environment factors are no 
less critical than climatic conditions in shaping long-
term risk patterns, thereby reinforcing the need for 
interdisciplinary approaches in urban health research.  

D. Methodological Advantages of the Gaussian 

Mixture Model 

A key strength of the proposed approach lies in the 
probabilistic formulation of GMM-based clustering. 
Unlike distance-based methods (e.g., k-means), GMM 
accommodates clusters with heterogeneous shapes, 
sizes, and covariance structures, enabling correlated 

demographic, built-environment, and incidence 
variables to be jointly modeled [11]. The optimal 
number of clusters is objectively supported by the 
Bayesian Information Criterion (BIC). The substantial 
reduction in BIC from 5192.91 (K=2) to 4851.36 (K=3) 
indicates a meaningful improvement in model fit, while 
additional clusters introduce unnecessary complexity 
with diminishing explanatory gain. Probabilistic 
memberships further imply overlapping risk 
distributions, particularly for Cluster 1, supporting the 
suitability of probabilistic clustering for urban dengue 
risk analysis. 

The findings of this study have important 
implications for dengue control in urban environments 
with heterogeneous risk profiles, such as Semarang 
City. The identification of distinct dengue risk clusters 
indicates that transmission is spatially concentrated 
and strongly influenced by localized urban and 
environmental characteristics rather than being 
uniformly distributed across the city [6]. From a public 
health policy perspective, these results suggest that 
dengue control strategies should shift from broad, 
citywide interventions to more targeted, location-
specific approaches. The identification of Cluster 2 as 
a persistent high-risk epicenter indicates that these 
urban villages require intensive, structural 
interventions, including environmental management 
and infrastructure improvement, rather than relying 
solely on reactive measures such as chemical fogging. 

Table 4. Comparison of Dengue Risk Modeling Approaches Used in Previous Studies and the Proposed 

Method. 

Study Method Input Data & Scale Limitations 

Lowe et al. [1]  Bayesian 

hierarchical models 

& DLNM (via INLA). 

Monthly data (2001-2019), 

558 Brazilian microregions. 

Inputs: PDSI, temperature, & 

urbanization. 

Depends on the accuracy of national 

secondary data; the issue of 

multicollinearity between water 

infrastructure and urbanization. 

Yin et al. [6] Systematic Review 

(PRISMA). 

28 articles (2014-2022); 

building scale, grid, to 

district. 

Variation in model performance 

across regions; lack of global 

standardization of input data. 

Feliciano et al. 

[9] 

Local Empirical 

Bayesian & Spatial 

Scan Statistics. 

Annual data (2014-2017), 

1,794 municipalities in 

Northeastern Brazil. Input: 

Dengue cases & social 

indicators. 

Potential underreporting of cases; 

ecological designs cannot 

demonstrate individual cause-and-

effect relationships. 

Liu et al. [13] ML-based modeling 

(XGBoost, SVR, 

MLP) & SARIMA. 

Monthly data (2022-2023), 5 

divisions in Bangladesh. 

Limited to short-term data (2 years); 

accuracy depends on the quality of 

surveillance reporting. 

This Study Gaussian Mixture 

Model (GMM) - 

Probabilistic 

Clustering 

Annual data (2021-2024), 

177 urban villages in 

Semarang. 18 

multidimensional urban 

indicators. 

Relies on secondary administrative 

data; does not directly integrate 

meteorological/climatic variables. 
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This perspective aligns with previous studies 
emphasizing the critical role of built-environment 
conditions in sustaining vector breeding and 
transmission risk [43][44][45]. 

Operationally, the probabilistic risk stratification 
produced by the GMM framework provides a practical 
decision-support tool for prioritizing dengue 
interventions with limited public health resources. By 
distinguishing persistent high-risk zones from 
transitional areas, health authorities can allocate 
surveillance efforts, personnel, and prevention 
programs more efficiently, while maintaining vigilance 
in areas with emerging risk profiles. More broadly, 
integrating epidemiological data with multidimensional 
urban indicators underscores the importance of 
interdisciplinary, data-driven approaches in infectious 
disease management. This framework offers a scalable 
model that can support evidence-based dengue control 
planning in other dengue-endemic cities experiencing 
similar urban complexity. 

While the proposed GMM framework provides an 
objective approach for dengue risk stratification, 
several limitations should be acknowledged. First, this 
study relies on secondary administrative data for urban 
indicators and dengue case reporting. Such data 
sources may be subject to underreporting or 
inaccuracies at the local level, which could affect 
cluster precision and, consequently, the operational 
reliability of the model, particularly for city-level early 
warning applications [46]. Second, the current 
framework does not explicitly incorporate 
meteorological or climatic variables, such as rainfall, 
humidity, or short-term temperature variations, into the 
clustering process. These factors are known to 
influence the population dynamics of Aedes aegypti 
mosquitoes and short-term transmission patterns 
[1][12]. In addition, the use of annual aggregated data 
at the village level may obscure finer-scale 
heterogeneity within sub-districts, including localized 
sanitation conditions at the neighborhood unit (RT/RW) 
level. 

Finally, the proposed clustering approach is 
unsupervised and descriptive in nature, and therefore 
cannot be used to infer causal relationships or  
generate real-time outbreak predictions. Future 
research is encouraged to integrate dynamic 
environmental data, such as satellite-derived indicators 
or real-time weather observations, and to combine 
probabilistic clustering with predictive modeling 
frameworks to enhance the operational value of 
dengue early warning systems. 

 

V. Conclusion 

This study developed a Gaussian Mixture Model (GMM)-
based dengue risk stratification framework by integrating 

18 multidimensional urban indicators in Semarang City. 
The analysis results show that this probabilistic 
clustering method objectively identifies three risk levels 
(Low, Intermediate, and High Risk). Key findings indicate 
a consistently extreme caseload in Cluster 2, with an 
average Incidence Rate (IR) of 104.75, encompassing 
eight urban villages as the main epicenters of 
transmission during the 2021–2024 period. This study 
applies a GMM approach to capture data uncertainty 
and identify risk transition areas, which are not captured 
by rigid partitioning methods. Practically, these 
stratification results allow Semarang City health 
authorities to shift their dengue control strategy from a 
uniform approach to area-based interventions, 
prioritizing high-risk urban villages as epicenters of 
transmission. However, this model still has limitations, 
including reliance on secondary data and the absence of 
daily climate variables. Further research is expected to 
integrate dynamic environmental data and real-time 
prediction models to strengthen the early warning 
system for dengue outbreaks in urban environments. 
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