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Abstract Dengue fever remains a pressing public health challenge in major Indonesian cities, including
Semarang. The complex interplay of heterogeneous demographic structures and built-environment
characteristics generates spatially uneven transmission risks, while conventional risk-mapping
approaches often fail to capture the probabilistic nature of these risks at fine-scale administrative levels,
limiting their utility for targeted interventions. This study aims to develop a robust, replicable framework
for dengue risk stratification that more accurately identifies localized high-risk areas and supports
evidence-based public health decision-making. The research introduces a probabilistic clustering
approach using Gaussian Mixture Models (GMM) to move beyond rigid partitioning methods, while
simultaneously integrating multi-year incidence data (2021-2024) with eighteen multidimensional urban
indicators across 177 sub-districts (kelurahan). This combined contribution advances methodological
rigor by accommodating overlapping data distributions and probabilistic cluster memberships, and
provides a nuanced, evidence-driven tool for stratifying dengue risk and guiding hyper-local interventions.
Several GMM configurations were evaluated using the Bayesian Information Criterion (BIC) to determine
the optimal number of clusters. The BIC value declined markedly when the number of clusters increased
from two to three, indicating a substantial improvement in model fit. Further increases yielded only
marginal gains, and the lowest BIC was achieved at three clusters, representing the most parsimonious
and effective solution. Internal validation confirmed that the cluster structure robustly captured
epidemiological variance despite the inherent heterogeneity of urban spatial data. Cluster 2 emerged as a
critical high-risk epicenter, geographically limited yet characterized by consistently elevated incidence,
pronounced temporal variability, and extreme values. The proposed GMM-based framework demonstrates
that dengue risk in Semarang is concentrated within localized foci of heightened vulnerability rather than
uniformly distributed. Ultimately, the methodology is replicable in other complex tropical urban
environments, thereby strengthening both academic rigor and practical public health decision-making.

Keywords Dengue risk stratification; Gaussian mixture model; Bayesian information criterion; Urban built-
environment; Spatial epidemiology.

l. Introduction

Dengue fever remains a critical public health threat in
Semarang, one of Indonesia’s major metropolitan
areas, where rapid urbanization has intensified the

incidence rates than their neighbors due to varying
socio-environmental vulnerabilities [2]. This spatial
heterogeneity poses a significant challenge for
surveillance and control, as city-wide data aggregation

complex interplay between demographic factors and
the built environment, leading to spatially uneven
transmission risks [1]. Semarang City has consistently
reported a substantial number of dengue cases over
recent years, with marked variability across sub-
districts, reflecting persistent spatial heterogeneity in
transmission risk. In this diverse urban landscape,
dengue transmission is often highly localized, with
certain sub-districts experiencing persistently higher

frequently masks critical high-risk zones that require
prioritized intervention [3][4]. Consequently, fine-scale
identification of dengue risk patterns at the sub-district
level is essential for implementing targeted vector
control and evidence-based public health strategies [5].

A wide range of spatial and spatiotemporal
analytical approaches have been proposed to examine
dengue risk patterns in complex urban environments.
Geographic information system (GIS)-based analyses
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and spatial statistical methods have been widely used
to detect dengue clusters and hotspots, enabling
visualization of high-risk areas [6]. Systematic reviews
have further emphasized the integration of
epidemiological data with demographic and
environmental indicators to improve dengue risk
mapping in complex urban settings [7]. In Southeast
Asia, where rapid urbanization continues to reshape
socio-environmental conditions, such integrative
spatial approaches have become increasingly relevant
(81[9].

Beyond traditional spatial analysis, machine
learning techniques have recently been applied to
dengue studies, primarily focusing on incidence
forecasting and early warning systems [10]. Several
studies reported promising predictive accuracy using
supervised learning algorithms when sufficient labeled
data were available [11][12]. However, these
forecasting-oriented models are often restricted to
temporal predictions and require predefined outcome
labels, which limits their usefulness for exploratory
spatial risk stratification where the goal is to identify
latent groupings across heterogeneous units [13].
Furthermore, supervised models are less suitable for
uncovering overlapping spatial risk profiles in multi-
dimensional urban datasets, where transmission
boundaries are rarely clearly defined [14][15].

Despite these advances, existing dengue risk
studies still exhibit significant limitations. Many
clustering-based approaches rely on distance-based
algorithms that assume homogeneous cluster shapes
and rigid group assignments [16]. Such fixed
partitioning  oversimplifies the transitional or
overlapping risk patterns commonly observed in dense,
highly mobile urban environments. Furthermore,
standard clustering approaches often struggle to
maintain robustness when faced with correlated noise
and the complex data structures inherent in multi-
dimensional spatial datasets [17]. Additionally, many
existing studies rely on single-year incidence
observations, which are highly sensitive to short-term
outbreak dynamics and may fail to capture persistent
risk trends. As a result, there remains a need for a
flexible and probabilistic clustering framework that can
capture multi-year dengue risk heterogeneity at fine
administrative scales. These limitations underscore the
need for a flexible, model-based clustering approach
capable of accommodating heterogeneous cluster
geometries, overlapping risk profiles, and interrelated
multi-dimensional urban indicators.

To address this gap, this study proposes a dengue
risk stratification framework based on the Gaussian
Mixture Model (GMM). GMM is a model-based
clustering approach that represents data as a mixture
of probability distributions, allowing for clusters with
different shapes, sizes, and orientations while

assigning probabilistic membership rather than rigid
class labels [18]. This characteristic makes GMM
particularly well-suited for multi-dimensional urban
dengue data, where risk patterns are influenced by
interacting demographic and built-environment factors
that frequently overlap across sub-district boundaries
[19]. In addition, the Bayesian Information Criterion
(BIC) is employed to objectively determine the optimal
number of dengue risk clusters, effectively reducing the
risk of overfitting and subjective selection bias [20].

Accordingly, this study focuses on stratifying
dengue risk at the sub-district level in Semarang City
through a probabilistic clustering framework based on
the Gaussian Mixture Model. Multi-year dengue
incidence rate data (IR-DD+DBD) from 2021 to 2024
are integrated with eighteen demographic and built-
environment indicators to characterize persistent
spatial heterogeneity across 177 urban sub-districts.

In this study, urban conditions are represented
using a set of demographic indicators, built-
environment characteristics, and the availability of
public facilities at the urban sub-district level.

The contributions of this study are as follows:

1. integrating multi-year dengue incidence data
with multi-dimensional demographic and built-
environment indicators at the sub-district level;

2. applying a Gaussian Mixture Model to capture
heterogeneous and overlapping dengue risk
patterns in an urban environment;

3. employing the Bayesian Information Criterion
to objectively determine the optimal number of
dengue risk clusters; and

4. providing interpretable fine-scale dengue risk
profiles to support targeted surveillance and
vector control planning by local health
authorities.

The paper is organized as follows: first, the study
area and methodology are described; then, clustering
results are presented; discussion follows; and
concluding remarks conclude.

Il. Method
A. Study Area and Dataset

Semarang City is a major metropolitan area in Central
Java, Indonesia, characterized by rapid urbanization
and a heterogeneous population distribution that
significantly influences dengue transmission dynamics.
The city’s diverse topography, spanning from low-lying
coastal areas in the north to hilly terrain in the south,
creates a complex urban environment with varying
ecological conditions. Administratively, Semarang City
consists of 177 urban sub-districts level, which serve
as the primary unit of analysis in this study. This fine-
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Table 1. Descriptive Statistics of Selected Demographic and Built - Environment Variables (n = 177 Sub -

Districts)
Variable Mean SD Min Max
Area Size 25.68 18.44 5.17 58.27
Population Density 6719.92 3683.95 1211.94 12264.8
Total Population 9437.17 6450.75 584 37499
Number of DBD Patients (2024) 1.82 217 11
Number of DBD Deaths (2024) 0.03 0.18 1
Number of Dengue Patients (2024) 37.73 28.51 144
Larvae-Free Index (ABJ, %) 93.88 4.1 71.98 98.9
Number of Parks 17.53 16.43 1 49
Number of Neighborhood Units (RT) 51.42 39.71 4 292
Number of Community Units (RW) 9.3 9.66 1 89
Number of Family Heads 3002.3 1987.02 184 11224
Number of Primary & Secondary Students 13.59 7.78 2 44
Total Students 1496.4 1332.06 46 8281
Number of University Students 0.37 0.77 0 5
Number of Health Workers 3.25 3.09 0 20
Number of Shops/Markets/Stalls 110.14 86.18 6 426
Number of Public Facilities 7.19 20.08 0 254
Total Worship Facilities 35.08 21.58 5 166

scale administrative approach is essential for capturing
the localized nature of dengue outbreaks in densely
populated urban areas.

The dataset integrates multi-year dengue incidence
rate data (IR-DD+DBD) for the period 2021-2024 with
eighteen demographic and built-environment indicators
representing population structure, residential density
proxies, and public facilities at the sub-district level. By
incorporating data across four years, the analysis
effectively captures the temporal persistence of dengue
risk patterns while minimizing the impact of short-term
epidemic fluctuations [3][9]. The selection of these
demographic and built-environment indicators follows
established epidemiological research emphasizing the
role of urbanization, population density, and
environmental context in shaping dengue transmission
risk [21][6][7].

B. Variable Selection and Description

The initial dataset comprised dengue incidence data
from 177 urban sub-districts in Semarang City,
combined with approximately 98 demographic,
infrastructural, and public facility indicators obtained
from secondary administrative sources. These

indicators reflect various aspects of urban structure,
population distribution, residential density, and public
service availability, which are widely associated with
dengue transmission dynamics in urban environments
[6][7]1[9]. However, high-dimensional administrative
datasets often contain significant redundancy and
multicollinearity, which can destabilize unsupervised
clustering models. Therefore, a rigorous variable
screening process was conducted to identify a subset
of indicators that are both epidemiologically meaningful
and statistically appropriate for the Gaussian Mixture
Model framework [11][22][23][24].

The variable selection process involved a multi-
stage evaluation: descriptive statistical analysis to
assess data completeness and variability; correlation-
based evaluation to mitigate redundancy among highly
correlated indicators; and domain relevance
assessment based on established dengue risk factors.
Specifically, indicators with extremely low variability or
those exhibiting strong collinearity (r > 0.8) were
scrutinized or consolidated to ensure analytical
robustness [24][25]. In cases of strong collinearity, one
of the correlated variables was retained based on
epidemiological relevance and data completeness to
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avoid redundancy while preserving interpretability. This
approach balances model interpretability with the need
to capture the multi-dimensional nature of the urban
built environment. This combined statistical and
domain-driven screening ensures that the retained
variables are both epidemiologically meaningful and
statistically suitable for stable Gaussian Mixture Model
clustering.

As a result, eighteen demographic and built-
environment variables were retained for further
analysis. These variables represent population
structure, residential density proxies (e.g., households
and neighborhood units), public facilities (e.g.,
educational, religious, and commercial spaces), and
environmental amenities (e.g., green spaces). These
18 indicators serve as multidimensional input for the
GMM clustering, providing a comprehensive profile of
the socio-environmental landscape across Semarang's
urban sub-districts. Similar categories of variables have
been reported as influential determinants of dengue
risk in previous urban studies [6][7][12][25].

This variable selection stage focused on identifying
relevant urban indicators, whereas the subsequent
feature engineering stage focused on constructing
temporal dengue incidence features used as inputs to
the clustering model. Table 1 presents the descriptive
statistics of the selected eighteen variables across 177
urban sub-districts. The selected indicators provide a
comprehensive representation of urban heterogeneity
while maintaining model stability and interpretability in
the subsequent Gaussian Mixture Model clustering
process [11][26].

C. Data Preprocessing

Prior to clustering analysis, a structured preprocessing
pipeline was implemented to ensure the consistency,
robustness, and comparability of all variables. The
initial stage involved data cleaning and column
harmonization to standardize variable names and
numeric formats across the 177 sub-districts. Sub-
district identifiers were utilized exclusively for labeling
and spatial mapping; thus, they were excluded from the
model-fitting process to prevent geographical bias in
the unsupervised learning stage.

Missing values were handled using median
imputation, a robust technique particularly suited for
public health datasets where extreme values or outliers
might otherwise distort the central tendency
[27][28][29]. Median imputation was selected for its
robustness to skewed distributions and the common
presence of outliers in urban and epidemiological data.
The proportion of missing values was relatively low
across variables, ensuring that the imputation process
did not substantially distort the original data structure.
To account for the diverse numerical scales across the
18 indicators, ranging from population counts to
percentages, all variables were normalized using Z-

scores. This transformation ensures that each feature
contributes equally to the Gaussian Mixture Model and
prevents variables with larger magnitudes from
dominating the cluster formation [30][31]. Finally,
exploratory correlation analysis was performed to
identify and mitigate high multicollinearity, ensuring a
stable and interpretable clustering outcome that truly
reflects the underlying spatial risk structures [32].

D. Feature Construction

After selecting urban indicators, a separate feature
engineering step was performed to construct temporal
dengue incidence features. While variable selection
focused on identifying relevant urban characteristics,
feature engineering was used to derive multi-year
incidence rate variables that capture the temporal
dynamics of dengue transmission. The final feature
matrix for the clustering analysis comprises 22
variables, integrating 18 demographic and built-
environment indicators with 4 annual dengue incidence
rate variables (IR-DD+DBD) spanning 2021 to 2024.
This multidimensional construction enables the model
to characterize each sub-district not only by its current
socio-environmental profile but also by its historical
epidemiological trajectory. The incorporation of multi-
year incidence data represents a deliberate strategy to
strengthen the robustness of risk stratification. By
accounting for transmission patterns over a four-year
period, the framework can identify persistent risk
hotspots while reducing sensitivity to episodic outbreak
spikes or year-specific anomalies that often distort
single-year observations [3][12]. This approach
ensures that the resulting strata capture stable, long-
term dengue transmission risks rather than transient
fluctuations, thereby providing a more reliable
foundation for sustainable public health planning
[33][34].

E. Gaussian Mixture Model Clustering

Dengue risk stratification in this study is conducted using
the Gaussian Mixture Model (GMM), a probabilistic,
model-based clustering technique that represents
observations as a finite mixture of multivariate Gaussian
distributions. In contrast to conventional distance-based
algorithms such as K-Means, which enforce rigid and
often spherical cluster boundaries, GMM provides
greater flexibility by accommodating clusters with
heterogeneous shapes, scales, and orientations. This
capability is particularly critical in urban epidemiological
contexts, where dengue risk profiles frequently overlap
across administrative units and exhibit substantial
spatial and socioeconomic heterogeneity [11][14][35].

Model-based clustering approaches, including GMM,
have been widely reported as effective in uncovering
latent risk structures in public health and spatial
epidemiology analyses, especially when underlying
class memberships are not sharply separable [36][37].
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These characteristics make GMM an appropriate
methodological choice for dengue risk stratification at
the sub-district level. This study employs the Gaussian
Mixture Model (GMM) as a probabilistic framework to
stratify urban sub-districts based on multidimensional
dengue risk profiles. The GMM assumes that the
observed data X = {x;, x,, ..., x,} are generated from a
finite mixture of K multivariate Gaussian distributions,
where each x; € R® represents the standardized
feature vector of a sub-district [11][37]. Within this
framework, the probability density function of an
observation x; is formulated as a weighted sum of
Gaussian components, as shown in Eq. (1)[38]:

p(xi) = X§-y wkN Cxiluk, $k) (1
where 1, denotes the mixing proportion of the k-th
component, satisfying ¥ _{k = 1}"K}m = 1, while yy
and Xy represent the mean vector and covariance matrix
of the corresponding Gaussian distribution [11][39]. The
multivariate Gaussian component N (x; | te Xx) IS
defined in Eq. (2) [40] as follows:

N Crilule, $k) = —p— exp |~ (xi -
(2m)2

Yk|2

H)T Sk e — k)] 2)

The set of model parameters 0 = {m e 2y} is
estimated using the Expectation—Maximization (EM)
algorithm, which iteratively maximizes the log-likelihood
of the observed data [11][37], as shown in Eq. (3)[38]:
2(©) = XL, log[Xk_; mkN (xi|3k)] @)
Unlike deterministic clustering methods such as K-
Means, the GMM provides a soft clustering mechanism
that allows each sub-district to be associated with
probabilistic cluster memberships rather than rigid class
assignments [39][41]. This property is particularly
relevant in Semarang’s urban context, where
demographic and environmental risk factors often
overlap across administrative boundaries. By explicitly
modeling uncertainty and transitional risk patterns, the
probabilistic formulation of GMM offers a more flexible
and realistic representation of dengue transmission
dynamics at the sub-district level. The optimal number of
mixture components K is subsequently determined
using the Bayesian Information Criterion (BIC), as
described in the following section. This approach not
only ensures statistical rigor but also reflects a thoughtful
balance between model complexity and interpretability,
acknowledging the human need for clarity in
understanding data-driven insights.
F. Determination of Optimal Number of Clusters
Model selection was guided by the Bayesian Information
Criterion (BIC), which evaluates the trade-off between
model goodness-of-fit and model complexity in a
statistically objective manner, and helps prevent

overfitting in model-based clustering [39][11]. Several
GMM configurations with different numbers of
components were evaluated, and the model with the
lowest BIC value was selected as the optimal solution.
The formula can be written as Eq. (4)[42].

BIC = =2In(L") + pln(n) (4)
Where L denotes the maximum likelihood of the fitted
GMM, p represents the number of estimated
parameters, and nis the number of urban sub-districts.
Information-theoretic criteria such as BIC are widely
used in model-based clustering to ensure parsimonious
model selection and to avoid unnecessary model
complexity [10][37][41].
G. Cluster Labeling and Risk Interpretation

Following clustering, the cluster labels were reordered
by the mean 2024 dengue incidence rate to ensure
consistent interpretation of dengue risk levels. Clusters
were subsequently categorized from low to high risk.
Cluster profiing was performed by calculating mean
values of demographic, built-environment, and dengue
incidence variables within each cluster. This step
facilitates interpretation of characteristic urban features
associated with different dengue risk levels and supports
targeted public health interventions [6][19]. Temporal
patterns of dengue incidence across clusters were
further examined to assess the persistence and
evolution of dengue risk during the 2021-2024 period
(3112].

H. Methodological Workflow

The overall methodological workflow of this study is
illustrated in Fig. 1, which summarizes the sequential
analytical steps implemented to achieve dengue risk
stratification at the sub-district level. The workflow
begins with multi-source data collection, including
dengue incidence rate data (IR-DD+DBD) for the
period 2021-2024 and selected demographic and built-
environment indicators for all urban sub-districts in
Semarang City. Following data collection, a data
preprocessing stage was conducted to ensure
consistency and reliability of the dataset. This stage
includes data cleaning and harmonization, handling
missing values using median imputation, feature
standardization through z-score normalization, and
exploratory correlation analysis to reduce redundancy
among  highly  correlated variables. These
preprocessing steps are essential to ensure balanced
feature contribution and stable clustering performance.
Subsequently, probabilistic clustering was performed
using the Gaussian Mixture Model (GMM) to capture
heterogeneous and overlapping dengue risk patterns
across urban sub-districts. To objectively determine the
optimal number of clusters, the Bayesian Information
Criterion (BIC) was used to evaluate multiple GMM
configurations with varying numbers of components.
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Data Collection (Dengue IR
2021-2024, Demographic &
Built - Environment Data

!

Data Cleaning &
Harmonization

!

Missing Value Handling
(Median Imputation)

!

Feature Standardization (Z-
score Normalization)

!

Correlation Analysis
(Redudancy Reduction)

!

Gaussian Mixture Model
(GMM) Clustering

l

Optimal Cluster Selection (BIC
- Based Model Selection)

!

Dengue Risk Stratification &
Interpretation

Fig. 1. Methodological workflow for dengue risk
stratification using Gaussian Mixture Model and
Bayesian Information Criterion.

The model with the lowest BIC value was selected as
the optimal clustering solution. Finally, the resulting
clusters were interpreted to generate dengue risk
stratification profiles, enabling the identification of
persistent spatial risk patterns across sub-districts. The
complete workflow presented in Fig. 1 ensures
methodological transparency and provides a structured
framework for integrating multi-year epidemiological
data with probabilistic clustering techniques to support
fine-scale dengue risk assessment.

lll. Result
A. Determination of Optimal Number of Clusters

The optimal number of clusters for dengue risk
stratification was determined using the Bayesian
Information Criterion (BIC). Several Gaussian Mixture
Model (GMM) configurations with different numbers of
components were evaluated to identify the model that
provides the best balance between model fit and
complexity.

As shown in Fig. 2, the BIC value decreases
substantially when the number of clusters increases
from two to three, indicating a notable improvement in
model fit. However, further increasing the number of
clusters beyond three results in only marginal reductions
in BIC, suggesting diminishing returns in model
performance. The minimum BIC value is achieved at
three clusters, indicating that this configuration
represents the most parsimonious and optimal
clustering solution for the dataset.

7000 4

6500 1

6000

5500 4

BIC(lower values indicate better model fit)

5000

T T T
2 3 4 5 6 7 8
Number of clusters (k)
(best k) = 3

Fig. 2. Bayesian Information Criterion values
obtained from Gaussian Mixture Model
clustering for different numbers of clusters

B. Cluster Validation Using Silhouette Coefficient

To further ensure that the identified clusters exhibit
measurable internal structure, an internal cluster
validation was conducted using the silhouette
coefficient. This metric assesses the degree of
similarity among observations within the same cluster
relative to those in neighboring clusters. The resulting
silhouette score of 0.234 indicates a moderate but
acceptable level of cluster separation, currently
commonly observed in unsupervised clustering applied
to heterogeneous urban epidemiological data. This
result suggests that, despite partial overlap between
clusters, the overall clustering structure captures
meaningful distinctions in dengue risk characteristics
across sub-districts.

Table 2. Distribution of urban sub-districts
across dengue risk clusters.

Cluster Number of Sub-District
0 92
1 77
2 8

C. Distribution of Dengue Risk Clusters

Based on the optimal three-component GMM
configuration, the 177 urban sub-districts in Semarang
City were stratified into three distinct dengue risk
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clusters. The resulting distribution of sub-districts
across these clusters is summarized in Table 2.

Cluster 0 contains 92 sub-districts, Cluster 1 includes
77 sub-districts, and Cluster 2 comprises 8 sub-districts.
The unequal distribution across clusters indicates
substantial spatial heterogeneity in dengue risk levels
among urban sub-districts. The relatively small size of
Cluster 2 suggests that high dengue risk is concentrated
in a limited number of localized sub-districts rather than
being uniformly distributed across the city. The spatial
distribution of dengue risk clusters further indicates that
the high-risk cluster (Cluster 2) is geographically limited
and concentrated within a small number of urban sub-
districts in Semarang City. These sub-districts are
predominantly located in densely built-up urban areas
characterized by high population concentration and
intensive human activity. In contrast, low-risk sub-
districts (Cluster 0) are more widely distributed across
the city, including areas with lower neighborhood density
and more residential land-use patterns. This spatial
concentration suggests that dengue risk in Semarang
City is not uniformly distributed but rather clustered in
specific urban pockets that exhibit heightened
vulnerability.

Fig. 3 illustrates the spatial distribution pattern of
dengue risk clusters derived from the Gaussian Mixture
Model. The visualization employs an abstract spatial
projection to highlight the heterogeneity and relative
concentration of clusters rather than precise
administrative boundaries. The high-risk cluster (Cluster
2) appears spatially limited, concentrated within a small
number of urban sub-districts, while low-risk (Cluster 0)
and intermediate-risk (Cluster 1) clusters are more
widely distributed. This pattern confirms that dengue risk
in Semarang City is spatially heterogeneous and
localized within specific urban pockets. Although this
visualization does not represent exact administrative
boundaries, it provides a clear spatial context for
identifying localized high-risk sub-districts relevant for
targeted public health interventions. Table 3 presents
the mean values of demographic, built-environment, and
multi-year dengue incidence indicators for each
identified cluster. Substantial structural differences are
evident across the three dengue risk strata. Cluster 0
(low risk) is characterized by lower population size,
fewer neighborhood units (RT/RW), and lower
concentrations of commercial and public facilities,
indicating relatively stable residential environments. In
contrast, Cluster 2 (high risk) exhibits markedly higher
mean values across population-related indicators,
neighborhood density proxies, and commercial facilities,
reflecting intense human mobility and interaction.
Cluster 1 demonstrates intermediate characteristics,

Spatial Distribution of Dengue Risk Clusters in Semarang City
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Fig. 3. Spatial distribution pattern of dengue
risk clusters based on GMM clustering

suggesting a transitional urban structure between low-
and high-risk settings.

D. Temporal Characteristics of Dengue Incidence
(2021-2024)

To examine temporal differences in dengue dynamics
among the identified clusters, average dengue incidence
rates from 2021 to 2024 were analyzed for each cluster.
The temporal trends are illustrated in Fig. 4., Cluster 2
consistently exhibits the highest average dengue
incidence rates across all 4 years, indicating a
persistent high-risk pattern. In contrast, Cluster 0
demonstrates relatively low and stable incidence levels
throughout the observation period. Cluster 1 shows
intermediate incidence values with greater variability,
reflecting a transitional risk profile. These results
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Fig. 4. Average dengue incidence rate trends for
each identified cluster during the 2021-2024
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Table 3. Mean Values of Demographic, Built-Environment, and Dengue Incidence Variables by Cluster.

Variable Cluster 0 Cluster 1 Cluster 2
(Low Risk) (Intermediate Risk) (High Risk)
Total Population 5331.21 12421.48 27931.75
Female Population 2718.60 6262.12 14152.00
Male Population 2633.98 6168.69 13941.63
Number of Family Heads 1751.89 3905.71 8686.63
Number of Neighborhood Units (RT) 34.25 63.42 133.50
Number of Community Units (RW) 563 12.97 16.13
Number of Early Childhood Schools (PAUD) 4.96 9.81 22.88
Total Worship Facilities 22.88 43.83 91.13
Number of Mosque 4.15 8.56 15.75
Number of Langgar 12.55 23.44 49.88
Primary & Secondary Education Facilities 9.62 16.23 33.75
Number of Elementary Schools 234 3.26 6.13
Number of Shops/ Market/ Stalls 73.04 139.99 249 .38
Area of Green/ Open Space 75464.59 29868.53 24271.62
Grocery Stores 35.86 76.88 119.50
Mini Markets 2.68 4.19 9.13
IR DD+DBD 2021 4.78 16.14 44.38
IR DD+DBD 2022 15.11 47.83 110.50
IR DD+DBD 2023 10.76 30.43 81.50
IR DD+DBD 2024 21.71 54.12 104.75

indicate that the GMM-based clustering captures not
only spatial differentiation but also meaningful temporal
patterns of dengue incidence.

E. Spatial Heterogeneity and Cluster Profiling
Further analysis was undertaken to examine the
distributional characteristics of dengue incidence within
each identified cluster. The temporal distribution of
dengue incidence rates across clusters for each
observation year is illustrated in Fig. 5. As shown,
Cluster 2 consistently exhibits the highest median
incidence rates and the widest interquartile ranges
across all years, indicating persistently elevated dengue
risk and substantial intra-cluster heterogeneity. In
contrast, Cluster 0 displays tightly concentrated
distributions with low median values, reflecting relatively
stable and consistently low dengue transmission levels.
Cluster 1 occupies an intermediate risk stratum,
characterized by moderate median incidence rates and
comparatively  broader  dispersion, suggesting
transitional risk dynamics. The presence of extreme
values within Cluster 2 further highlights localized sub-
districts experiencing exceptionally high dengue
incidence, underscoring the existence of concentrated
hotspots that deviate markedly from the broader
epidemiological patterns observed across the city.
Beyond differences in median values, the high-risk

cluster (Cluster 2) exhibits pronounced extreme dengue
incidence levels. In the 2024 observation year, the mean
dengue incidence rate (IR DD+DBD) in cluster 2
reached 104.75, which is nearly five times higher than
that observed in the low-risk cluster. Moreover, a small
number of sub-districts within cluster 2 recorded
substantially higher incidence values, as reflected by the
wide interquartile range and the presence of upper-end
outliers in Fig. 5. These extreme values indicate
localized hyper-endemic conditions within a small
number of urban sub-districts, highlighting that dengue

Distribution of Dengue Incidence Rates by Cluster (2021-2024)
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risk in Semarang City is not only elevated in Cluster 2
but also highly heterogeneous in magnitude.

IV. Discussion
A. Interpretation of Dengue Risk Clusters

A Gaussian Mixture Model (GMM) was employed to
stratify dengue risk in Semarang City, with model
selection optimized based on the Bayesian Information
Criterion (BIC). As illustrated in Fig. 2, the most
significant reduction in the BIC value occurred at the
transition from two to three clusters k = 3. This result
suggests that a three-cluster configuration provides the
most parsimonious and representative framework for
capturing the urban risk heterogeneity in the study area
without introducing unnecessary model complexity.

The spatial distribution of clusters shown in Fig. 3
and summarized in Table 2 indicates that the dengue
burden is not uniformly distributed across the city but is
heavily concentrated in eight specific sub-districts
classified as Cluster 2. Although this cluster comprises
only a small fraction of the total areas, its Incidence
Rate (IR) remained consistently high throughout the
2021-2024 period. As shown in Fig. 4, Cluster 2
reached a peak IR of 104.75 in 2024, approximately 4.8
times higher than the IR of Cluster 0 (21.71). This
persistent temporal pattern confirms that these eight
sub-districts function as the primary epicenters of
dengue transmission in Semarang City, rather than
experiencing transient case surges.

The demographic and built-environment indicators
presented in Table 3 provide a deeper explanation for
the elevated risk in Cluster 2. This cluster exhibits a
high average population of 27931.75 residents per sub-
district, substantially exceeding Cluster 0’s average of
5331.21. Furthermore, Cluster 2 is characterized by
intensive economic activity, with an average of 249.38
shops and markets, alongside dense residential
structures averaging 133.50 neighborhood units (RT)
per sub-district. This convergence of high population
density, commercial activity, and compact settlements
likely increases contact between humans and Aedes
aegypti mosquitoes, thereby accelerating local virus
transmission [6][7].

From a public health operational perspective, the
substantial disparities in IR values between clusters, as
reflected in the data distribution in Fig. 5, suggest that
a uniform, city-wide intervention approach is no longer
effective. The persistently high incidence in Cluster 2,
despite the implementation of routine control programs,
points to the presence of structural risk factors.
Therefore, dengue control efforts in these high-risk
areas require more targeted strategies, including
improvements to environmental infrastructure and
residential area planning, to complement standard

interventions such as fogging and larval source
reduction.

B. Temporal
Dynamics

In terms of methodological effectiveness, the use of the
Gaussian Mixture Model (GMM) in this study provides
a more flexible clustering approach than conventional
rigid clustering methods. Unlike algorithms that force
each region into a specific cluster (hard clustering),
GMM allows each sub-district to have a membership
probability. This enables the model to better represent
heterogeneous urban areas where risk boundaries
often overlap. Based on the evaluation results, the
GMM model applied to Semarang City data produced
a Silhouette Score of 0.234. Although urban
epidemiological data are highly complex, this value
indicates a sufficient level of cluster separation.
Compared with the hierarchical approach used by
Lowe et al. [1], which applies strict risk classification,
the probabilistic GMM approach is more adaptable in
handling areas with transitional risk characteristics
(Cluster 1), thereby reducing bias in defining priority
zones. Comparison with previous studies summarized
in Table 4 highlights the novelty of this research. The
study by Feliciano et al. [9] employed spatial scan
statistics to identify significant dengue risk clusters,
with a primary focus on hotspot detection. In contrast,
the GMM model in this study enables more detailed risk
stratification at the sub-district administrative level by
simultaneously considering 18 multidimensional
indicators.

Furthermore, unlike the study by Yin et al. [6], which
emphasized meteorological variables, the present
study demonstrates that integrating built environment
characteristics and settlement density contributes to
more stable dengue risk patterns for long-term
planning. The probabilistic nature of the GMM
approach also helps reduce potential classification
errors caused by rigid cluster boundaries. This
characteristic has important practical implications for
public health planning, as it supports a more precise
and targeted allocation of dengue control resources in
Semarang City based on the degree of risk probability
in each region.

C. Comparison with Previous Dengue Risk Studies

A methodological comparison between the proposed
GMM framework and previous studies is summarized
in Table 4. Unlike the Bayesian Hierarchical Model
approach used by Lowe et al. [1] and do Carmo et al.
[9], which focused on relative risk (RR) and correlations
between social determinants in Brazil, this study
applies a Gaussian Mixture Model (GMM) to capture
the probabilistic nature of dengue risk. The use of a
GMM allows for the identification of transition areas
characterized by overlapping clusters, an aspect often

Stability and Transitional Risk
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Table 4. Comparison of Dengue Risk Modeling Approaches Used in Previous Studies and the Proposed

Method.
Study Method Input Data & Scale Limitations
Lowe et al. [1] Bayesian Monthly data (2001-2019), Depends on the accuracy of national

hierarchical models
& DLNM (via INLA).

558 Brazilian microregions.
Inputs: PDSI, temperature, &
urbanization.

secondary data; the issue of
multicollinearity between water
infrastructure and urbanization.

Yin et al. [6] Systematic Review

(PRISMA).

28 articles (2014-2022);
building scale, grid, to
district.

Variation in model performance
across regions; lack of global
standardization of input data.

Feliciano et al. Local Empirical
[9] Bayesian & Spatial
Scan Statistics.

Annual data (2014-2017),
1,794 municipalities in
Northeastern Brazil. Input:
Dengue cases & social

Potential underreporting of cases;
ecological designs cannot
demonstrate individual cause-and-
effect relationships.

indicators.
Liu et al. [13] ML-based modeling  Monthly data (2022-2023), 5 Limited to short-term data (2 years);
(XGBoost, SVR, divisions in Bangladesh. accuracy depends on the quality of
MLP) & SARIMA. surveillance reporting.

This Study Gaussian Mixture Annual data (2021-2024), Relies on secondary administrative

Model (GMM) - 177 urban villages in data; does not directly integrate

Probabilistic Semarang. 18 meteorological/climatic variables.

Clustering multidimensional urban

indicators.

overlooked in rigid partitioning models. From a spatial
perspective, this study aligns with the systematic
review conducted by Yin et al. [6], which employed
multidimensional urban indicators to capture risk
heterogeneity within complex built environments. In
contrast, while the Bangladesh study by Liu et al. [12]
prioritized the accuracy of temporal predictions
(forecasting) through machine learning approaches
such as XGBoost, the present Semarang study places
greater emphasis on spatial risk stratification at the
micro-scale (sub-district level). A key distinction also
emerges in the selection of input variables. Whereas
most reference studies [1][12] rely predominantly on
meteorological parameters such as temperature and
rainfall, the proposed model demonstrates that dengue
risk stability in a large city like Semarang can be
robustly identified through 18 structural urban
indicators. This finding underscores that, in high-
density urban areas, built environment factors are no
less critical than climatic conditions in shaping long-
term risk patterns, thereby reinforcing the need for
interdisciplinary approaches in urban health research.

D. Methodological Advantages of the Gaussian
Mixture Model

A key strength of the proposed approach lies in the
probabilistic formulation of GMM-based -clustering.
Unlike distance-based methods (e.g., k-means), GMM
accommodates clusters with heterogeneous shapes,
sizes, and covariance structures, enabling correlated

demographic, built-environment, and incidence
variables to be jointly modeled [11]. The optimal
number of clusters is objectively supported by the
Bayesian Information Criterion (BIC). The substantial
reduction in BIC from 5192.91 (K=2) to 4851.36 (K=3)
indicates a meaningful improvement in model fit, while
additional clusters introduce unnecessary complexity
with  diminishing explanatory gain. Probabilistic
memberships  further imply  overlapping  risk
distributions, particularly for Cluster 1, supporting the
suitability of probabilistic clustering for urban dengue
risk analysis.

The findings of this study have important
implications for dengue control in urban environments
with heterogeneous risk profiles, such as Semarang
City. The identification of distinct dengue risk clusters
indicates that transmission is spatially concentrated
and strongly influenced by localized urban and
environmental characteristics rather than being
uniformly distributed across the city [6]. From a public
health policy perspective, these results suggest that
dengue control strategies should shift from broad,
citywide interventions to more targeted, location-
specific approaches. The identification of Cluster 2 as
a persistent high-risk epicenter indicates that these
urban villages require intensive, structural
interventions, including environmental management
and infrastructure improvement, rather than relying
solely on reactive measures such as chemical fogging.
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This perspective aligns with previous studies
emphasizing the critical role of built-environment
conditions in sustaining vector breeding and
transmission risk [43][44][45].

Operationally, the probabilistic risk stratification
produced by the GMM framework provides a practical
decision-support  tool for prioritizing dengue
interventions with limited public health resources. By
distinguishing  persistent high-risk zones from
transitional areas, health authorities can allocate
surveillance efforts, personnel, and prevention
programs more efficiently, while maintaining vigilance
in areas with emerging risk profiles. More broadly,
integrating epidemiological data with multidimensional
urban indicators underscores the importance of
interdisciplinary, data-driven approaches in infectious
disease management. This framework offers a scalable
model that can support evidence-based dengue control
planning in other dengue-endemic cities experiencing
similar urban complexity.

While the proposed GMM framework provides an
objective approach for dengue risk stratification,
several limitations should be acknowledged. First, this
study relies on secondary administrative data for urban
indicators and dengue case reporting. Such data
sources may be subject to underreporting or
inaccuracies at the local level, which could affect
cluster precision and, consequently, the operational
reliability of the model, particularly for city-level early
warning applications [46]. Second, the current
framework does not explicitly incorporate
meteorological or climatic variables, such as rainfall,
humidity, or short-term temperature variations, into the
clustering process. These factors are known to
influence the population dynamics of Aedes aegypti
mosquitoes and short-term transmission patterns
[1][12]. In addition, the use of annual aggregated data
at the village level may obscure finer-scale
heterogeneity within sub-districts, including localized
sanitation conditions at the neighborhood unit (RT/RW)
level.

Finally, the proposed clustering approach is
unsupervised and descriptive in nature, and therefore
cannot be used to infer causal relationships or
generate real-time outbreak predictions. Future
research is encouraged to integrate dynamic
environmental data, such as satellite-derived indicators
or real-time weather observations, and to combine
probabilistic clustering with predictive modeling
frameworks to enhance the operational value of
dengue early warning systems.

V. Conclusion

This study developed a Gaussian Mixture Model (GMM)-
based dengue risk stratification framework by integrating

18 multidimensional urban indicators in Semarang City.
The analysis results show that this probabilistic
clustering method objectively identifies three risk levels
(Low, Intermediate, and High Risk). Key findings indicate
a consistently extreme caseload in Cluster 2, with an
average Incidence Rate (IR) of 104.75, encompassing
eight urban villages as the main epicenters of
transmission during the 2021-2024 period. This study
applies a GMM approach to capture data uncertainty
and identify risk transition areas, which are not captured
by rigid partitioning methods. Practically, these
stratification results allow Semarang City health
authorities to shift their dengue control strategy from a
uniform approach to area-based interventions,
prioritizing high-risk urban villages as epicenters of
transmission. However, this model still has limitations,
including reliance on secondary data and the absence of
daily climate variables. Further research is expected to
integrate dynamic environmental data and real-time
prediction models to strengthen the early warning
system for dengue outbreaks in urban environments.
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