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Abstract: Osteoporosis is a silent disease before significant fragility fractures despite its high prevalence, and
its screening rate is low. In predictive healthcare analytics, the ElIman recurrent neural network (ERNN) has
been widely used as a learning technique. Traditional learning algorithms have some limitations, such as slow
convergence rates and local minima that prevent gradient descent from finding the global minimum of the error
function. The main goal is to precisely estimate each individual's risk of developing osteoporosis. These
forecasts are essential for prompt diagnosis and treatment, which have a significant influence on patient
outcomes. Hence, the present research focuses on making a more efficient prediction method based on an
optimized Elman recurrent neural network (ERNN) for predicting osteoporosis diseases. An optimized ERNN
method, IBCO-ERNN, improved bacterial colony optimization (IBCO) by optimizing the ERNN weights and
biases. The IBCO approach uses an iterative local search (ILS) algorithm to enhance convergence rate and
avoid the local optima problem of conventional BCO. Subsequently, the IBCO is used to optimize the ERNN's
weights and biases, thereby improving convergence speed and detection rate. The effectiveness of IBCO-
ERNN is evaluated using four different types of osteoporosis datasets: Femoral neck, Lumbar spine, Femoral
and Spine, and BMD datasets. The proposed IBCO-ERNN produced higher accuracy at 95.61%, 96.26%, 97.26%,
and 97.54 % for the Femoral neck, Lumbar spine, Femoral, and Spine datasets, respectively. The experimental
findings demonstrated that, compared with other predictors, the proposed IBCO-ERNN achieved respectable

accuracy and rapid convergence.

Keywords: Osteoporosis disease prediction; bacterial colony optimization; Elman recurrent neural
hyperparameter optimizations;

network;

I. Introduction
Osteoporosis is a disorder of the bones that occurs when

especially those who are older and have gone through
menopause. However, if your bones have been

bone mass and bone mineral density (BMD) decline, or
when changes occur to the composition and strength of
bone. This can lead to bone density loss and an
increased risk of fractures or broken bones. So fragile
that falling or even small forces like leaning over or
coughing might cause a fracture. The most common
fractures caused by osteoporosis are those of the wrist,
hip, and spine, which can afflict both men and women
from all backgrounds [1]. Osteoporosis is a silent
disease, and even if it does not affect the patient
noticeably until a fragility fracture is detected, researchers
claim that more than 70 percent of patients are not aware
of the disease until a fracture event has taken place, and
a screening for osteoporosis is not more than 30 percent
in high-risk groups. This diagnosis has serious clinical and
financial outcomes because osteoporosis-related
fractures cause millions of cases per year and place a
huge healthcare burden. Repairing already brittle
skeletons or preventing bone loss can be accomplished
with a balanced diet, medication, and weight-bearing
exercise. Often, there are no signs in the early stages of
bone loss. Asian and White women are most at risk,

compromised by osteoporosis, you may experience
height loss over time, back pain from a damaged or
fractured vertebra, a bent posture, and an unexpectedly
rapid fracture [2]. Age-related changes in BMD and rising
fracture rates result in morbidity and sometimes mortality
[3].

The only accurate osteoporosis screening test is the
BMD, and its value is derived from the bone area and
bone mineral content (BMC). The tests are primarily
conducted at the lumbar spine and femoral neck region of
the skeleton. DXA is the most widely used technique for
verifying an osteoporosis diagnosis [4]. The hip and spine
are the recommended sites for DXA assessment of BMD
by the World Health Organization (WHO). Based on BMD
values provided by DXA, the National Osteoporosis
Foundation (NOF) and the WHO developed osteoporosis
criteria. DXA uses T- and Z-scores to report BMD test
results. In absolute terms, areal BMD is expressed as
grams of mineral per square centimeter of scanned area
(g/lcm2). T-scores compare the subject's BMD to that of
young, healthy adults of the same gender. The Z-score
compares an individual's BMD with that of a reference
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group matched for age, gender, and ethnicity [5].
According to the WHO, a T-score above 1.0 is considered
normal, one between 1.0 and 2.5 is considered
osteopenia, and one below 25 is considered
osteoporosis. Based on the T-score, we classified the
BMD (g/cm2) and made a diagnosis (normal or
osteoporosis) [6].

In the field of osteoporosis research, as in other
research domains, machine learning (ML) can be a
promising approach that may illuminate individualized
methods and improve understanding of the condition in
this unprecedented era of overwhelming medical data [7,
8]. ML models have been used to predict osteoporosis,
but they are also limited in that they can easily get stuck
in local minima, are sensitive to initial weights, and are
slow to converge, resulting in false-negative predictions,
which is a costly trait in medical screening. These
restrictions point to the fact that a more proper and
effective prediction framework is badly needed to help
detect osteoporosis earlier and minimize the risks related
to the fractures. The ERNN is a kind of ML algorithm
which applied to solve various real-world applications.
The neurons that make up the ERNN are joined to the
nodes of the network's other layers by weighted
connections. Typically, they have one output layer, one
input layer, one or more hidden layers, and one recurrent
layer. The model now has a memory function, can adapt
to time-varying systems, and exhibits excellent global
stability due to the addition of a context layer with a delay
operator in the hidden layer. However, trial and error are
typically used to identify the network structure, which
includes the number of hidden levels [9].

The ERNN is thought to be an optimization of the
BPNN, benefiting from its strengths but unavoidably
receiving some of its inherent weaknesses, such as the
ease with which it can become trapped in local minima,
the speed with which it converges, and the length of
training time required because of its fixed learning rate,
as well as the difficulty in determining the number of
hidden neurons that can affect the model's performance
and recognition accuracy. The three most important
hyperparameters that significantly affect ERNN
performance are weights and biases, learning rate, and
hidden neurons. The traditional ERNN approach involves
initializing these values at random, which increases the
degree of uncertainty surrounding ERNN's performance
[8].

The accuracy of an ERNN is directly and significantly
impacted by its weights and biases. While biases modify
the activation threshold to help the network better fit
intricate patterns in the input, weights dictate the direction
and strength of connections between neurons. Weights
also determine the extent to which previous hidden states
impact the current output in ERNNs, which process
temporal sequences [10]. The network may miss crucial
dependencies if these parameters are not appropriately
optimized, leading to poor generalization and erroneous
predictions [11]. Higher prediction accuracy results from
the ERNN's improved ability to simulate non-linear and
time-dependent interactions when the weights and biases
are properly tuned. The network may overfit or underfit
due to poorly tuned weights. Similarly, improper biases

can distort activation outputs, hindering neurons' ability to
learn effectively [12].

On the other hand, recent work has employed swarm
intelligence (Sl) techniques to enhance ERNN
performance. It has been discovered that Sl algorithms
are more advantageous for training ML models due to
their potential for exploration and exploitation. However,
the method discussed above has many shortcomings,
such as premature convergence, low accuracy, and high
computational time. The BCO is a newly developed Sl
algorithm that can rapidly reach global solutions [11].
Nevertheless, due to its limited capacity for global
exploration, BCO is prone to local optima and produces
unpredictable optimization outcomes. To mitigate this
shortcoming, a novel BCO utilizing iterative local search
(ILS) was developed.

The suggested approach incorporates an ILS-type
local search algorithm [13]. To provide the IBCO a strong
chance of breaking out of the local optima, the ILS
algorithm disrupts the local optimum and conducts some
local research. As a result, IBCO, an enhanced form of
BCO based on ILS, strikes a better balance between
exploration and exploitation. This study's primary
objectives are to use an IBCO to maximize ERNN
performance to the global minimum, lower error, and
expedite learning. The proposed model is important
because it can optimize ERNN parameters to enhance
training efficiency, shorten execution time, and accelerate
learning speed and convergence. In this work, the
ERNN'’s weights and biases are optimized using a novel
IBCO approach.

In this paper, the new optimized ERNN algorithm is
based on IBCO for predicting osteoporosis diseases.
One recently developed Sl algorithm is IBCO, which can
find global solutions efficiently. Hence, this study uses the
IBCO, a recently suggested swarm intelligence
optimization model, to find appropriate hyperparameters
of ERNN to improve its performance. The primary
objective of the learning is to map inputs to outputs to
identify the optimal set of weights and biases for high
accuracy. An upgraded version of the optimized ERNN is
used to carry out the proposed system's objective,
enabling healthcare professionals to take preventative
action when necessary to prevent the development of
osteoporosis. The contribution of the paper is as follows,

1. The suggested optimized ERNN to forecast
osteoporosis disease

2. The weights and biases of the ERNN are trained
using the IBCO to improve generalization
performance and prediction accuracy

3. The performance of the suggested optimized ERNN
approach is examined using four different
osteoporosis datasets

4. The optimized ERNN's robustness in comparison to
some benchmark prediction models

The following sections make up the remainder of the
article: A few recent research on the diagnosis of
osteoporosis disease is covered in section 2. The ERNN
approach is covered in section 3. BCO and ILS
approaches are discussed in Sections 4 and 5
respectively. Section 6 discussed In Section 7, the
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suggested optimized IBCO-ERNN approach is covered.
Section 8 discusses the experimental findings, while
Sections 8 and 9 provides the discussions and conclusion
respectively.

Il. Related works

Osteoporosis is a soundless destroyer disease that
primarily affects elderly persons due to bone fragility and
fracture. Osteoporosis patients can be saved by early
and accurate diagnosis. Numerous research has been
recently used ML algorithms to predict osteoporosis using
different datasets, including numerical and image
datasets. Hence, numerous articles about investigations
on osteoporosis disease prediction are addressed in the
section that follows. For bone density screening utilizing
chest low-dose computed tomography, this study created
an automatic diagnostic method combining ML-based
radio mic texture analysis and segmentation.
Opportunistic screening is made possible by the
presented technology without the use of a special
phantom or quantitative computed tomography (CT). The
created method might be utilized as an auxiliary for
opportunistic screening or for patients who are unqualified
for screening with dual-energy X-ray absorptiometry, and
it could be included in the existing clinical workflow [14].
A classification task for CT-based osteopenia and
osteoporosis diagnosis was developed [15]. The newly
developed method also makes use of a multi-view CT,
known as MVCTNet, which uses two images from the
original CT picture to automatically classify osteopenia
and osteoporosis. The MVCTNet gathers multiple
features from the pictures produced by our multi-view
setups, in contrast to other techniques that use a single
CT image as input. A new deep learning is developed to
forecast T-score and BMD from chest X-rays, one of the
most popular, accessible, and affordable medical imaging
assessment techniques [16]. Patients with osteoporosis
and diabetes have a hybrid model that combines
XGBoost and deep neural networks to forecast their
fracture risk and examine the impact of the patient's
physiological variables on fracture risk [17]. Using five
convolutional neural network (CNN) representations,
osteoporosis was determined from the hip radiographs of
1131 individuals who received both skeletal BMD testing
and hip radiography at a single general hospital [18].

The developed prediction approach uses ML to
categorize osteoporosis from panoramic radiographs
taken during dental treatment. A dataset of 778 pictures
was gathered from patients who underwent dental
panoramic radiography and skeletal BMD measurements
at the same general hospital for objective labeling. Using
CNN models such as ResNet-18, -50, and -152 and
EfficientNet-b0, -b3, and -b7, osteoporosis was evaluated
from the oral panoramic radiographs [19]. An innovative
data preparation technique is suggested and tested on a
challenging classification data set where different
classifiers perform on average at less than 50%. The
dataset relates to the bone illness osteoporosis, which is
categorized by low BMD and microstructural degradation
of bone tissue and increases the risk of fracture. The
dataset consists of 589 individuals whose diagnoses were
made via osteal bone densitometry and laboratory testing.

In all instances, participants were divided into three
classes using the thirty-three diagnostic parameters for
osteoporosis risk prediction (normal, osteopenia, and
osteoporosis) [20]. They created an osteoporosis
prediction system that accurately assesses the likelihood
of the disease based on crucial variables including
calcium levels and smoking behaviors, allowing those at
high risk to be directed to access the DEXA scanner.

A more advanced artificial immune system (AIS) is
used in our suggested system, which enables healthcare
professionals to take preventive action when it is
necessary to prevent the early onset of osteoporosis [21].
The developed model compares the four prediction
methods that took disease history and lifestyle factors into
account while predicting the risk of osteoporosis in
Chongqing adults to choose the best prediction model. A
cross-sectional study using a questionnaire and
convenience sampling, to gather information about
sickness history and adults' daily routines who received
dual energy from January 2019 to December 2019.
Absorption of X-rays [22]. An automated, low-cost
technique that analyses the cancellous texture of
radiographs of the hands and wrists to detect the early
signs of osteoporosis. The trained classifier model
performs well in differentiating between participants with
high bone mass and those with low bone mass [23]. |. M.
Wani et al. (2023) suggest using CNN to identify
osteoporosis in X-ray images. In this work, we classified
the knee joint X-ray pictures into normal, osteopenia, and
osteoporosis disease groups using the transfer learning
of deep learning-based CNNs. The primary goals of this
work are to (i) current a dataset of 381 knee x-rays that
have been psychologically validated using T-scores and
(i) suggest a deep learning method that uses transfer
learning to categorize various disease phases.

1. Methods
A. ERNN

ERNN is a type of feedback neural network; it builds on
BPNN by adding a hidden layer that serves as a delay
operator and memory, giving the network the capacity to
adapt to dynamic, time-varying properties while
maintaining strong global stability. The input, hidden,
recurrent, and output layers are the four standard layers
that make up the topology. The recurrent layer is used to
remember the hidden layer's output, which resembles a
step delay operator as shown in Eq. (4) [24]. With a
BPNN network, the delay and storage of the recurrent
layer connect the hidden layer's output to its input. The
method is sensitive to historical information, and a
network of internal feedback sources can improve the
method's capacity for handling dynamic information.
Fig.1. ERNN framework shows the ERNN framework.
The scheme can be fine-tuned to time-varying features
due to its dynamic mapping function, which is made
possible by memorizing the internal state. The input layer
is determined in Eq. (1) as follows [24],

Xie(k) = Xz Xie(k = 1) (1)
Here, X;; - is an input with n input neurons at time t and k
time step.
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Fig.1. ERNN framework

The inputs for each hidden neuron are as in Eq. (2) [24]
net;. (k) = Xies Wi X (k — 1) +Z?=1 CiRi:(k)  (2)
W;;- weights between the input and hidden layers, C;-
weights between hidden and recurrent layers. p is the
number of recurrent neurons. The hidden layer's (2)
output calculated as shown in Eq. (3) [24]
Zye(k) = f (netye(k) = Ty WiXye(k = D +X7_ GRe (k) (3)

The recurrent layer's (R) result is regarded in Eq. (4) [24],

Rje(k) = Zjr(k = 1) (4)
The output layer's (Y) results are measured as Eq. (5) [24]
Yi(k) = f(Z?:l Vijt(k)) ()

Here, V is weight between hidden and output layer. ERNN uses
BPNN to revise weights; the error of the network is defined in
Eq. (6) [24],

E = Yioi(te — vi)? (6)
where, t,-is the target output, y,- is the predicted value,
and » - number of data samples.

Algorithm 1: BCO algorithm

Inputs: Population size (S5), Chemotaxis step

(N.), Reproduction (N,.), Probability (p,.),

Maximum iteration ((Max_Iter) and objective
function f(x)

Outputs: best solutions (Xpes:)

Step 1: Initialize the required parameters

Step 2: while (the maximum iteration is not met) do

Step 3: Chemotaxis & communications

Step 4: Elimination and reproduction

Step 5: Migration

Step 6 Position updating

Step 7: End while

Step 8: If the termination criteria are not satisfied then
Go to Step 2. Otherwise, stop the process

Step 9: Store final position as best

B. Bacterial colony optimization

BCO is a new Sl algorithm developed by Niu and Wang
(2012) [25]. To ease the optimization process, the BCO
algorithm, a new bacterial algorithm with S| behavior, was
presented. Many variants of BCO have been developed
to solve various real-world applications [26-31]. The BCO
is made up of five phases: chemotaxis and
communication, elimination and reproduction, migration,
and reproduction. Chemotaxis and communication are
employed during the complete process of BCO. By
learning about the population, the bacteria may fine-tune
their swimming and tumbling routes, which is illustrated in
[71 [25]. A unique chemotaxis and communication
approach is used to update the bacterium positions.
Chemotaxis in bacteria can be divided into two sorts
throughout their lives: tumbling and swimming. When
tumbling, a stochastic direction contributes to the actual
swimming process. As can be seen here, while tumbling,
the combined effects of the turbulence director and the
optimal searching director change the direction of the
search and update the positions of each bacterium which
are determined in Eq. (7) [25],
Position;(T) = Position;(T — 1) + C(i) * [f;. (Gpese — Position; (T —
1) + (1 = f;) * (Pyest, — Positiony(T — 1)) + turb;] (7)
To put it another way, there isn't a turbulence director
during the swimming process to guide bacteria toward
their ideal state, which is determined as Eq. (8) [25],
Position;(T) = Position;(T — 1) + C(i) * [f;. (Gpess — Position;(T —
D) + (1 = £;) * (Pyest, — Position;(T — 1))] (8)

C()) = Crin + ( ) Cinax = Cnin 9)

Where, turb;- turbulent direction variance value. f; €
{0,1}, C(i) - chemotaxis step size value.P, .- personal
best and Gy ;- global best. n - linearly reducing way of
chemotaxis step. T is the time step. The values Iter;,,,
and Iter; represent the maximum number of iterations

Itermax—Iter;

Itermax
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Algorithm 2: ILS algorithm

Inputs: Initial solutions (X), Maximum iteration
(Max_Iter), and objective function f(.)

Outputs: best solutions (Xpes:)

Step 1: The greatest solution X, is perturbed to attain a
transitional state X,, the perturbation is X,, =
X, Xrand()

Step 2: Examine the intermediate state X,, mentioned
earlier again to determine the local optima
solution X/, or the local optima, f(X,)

Step 3: Acceptance state
If f(X,) < f(X))then

X, =X/
Elseif (exp (—f(X.) — f(X,) > rand())
X, =X/
f&X) = f(X)
End if
Step 4: Return the best solution

and the current iteration, respectively. C,,q, and C,,;, are
the chemotaxis step size controls how far each bacterium
moves during the optimization process, which is
illustrated in Eq. (9) as shown in [25]. During the
elimination and reproduction phase, the sick bacterium
will be replaced by the high-energy bacterium, which will
multiply to create the most recent people. Given its
tremendous energy, it is clear that the bacterium is quite
effective at finding resources. The bacteria can move
within a certain range of search space during the
migration phase when certain requirements are met.
Bacteria can, of course, use probability during the
migrating phase to search for the most recent nutrients.
Algorithm 1 displays the step-by-step BCO process.

C. lterative Local Search (ILS)

The iterative local search algorithm (ILS) is a
straightforward and effective metaheuristic [13, 32].
Because this approach performs some perturbation and
local research based on the local optima, it can
successfully handle situations where intelligent
optimization algorithms are prone to falling into the local
optima. The ILS algorithm has produced positive local
search results when paired with other intelligent
optimization techniques in recent years. Algorithm 2
shows the step-by-step process of the ILS algorithm.

D. Improved BCO (IBCO)

By strengthening the local exploitation process, the ILS
method significantly improves BCO's optimization
capabilities. Through mechanisms including chemotaxis,
reproduction, and elimination-dispersal, BCO is good at
exploring the global search space; yet, because it is
stochastic, it may have trouble pinpointing the global
optimum. To overcome this limit, ILS improves the best
solutions found within their areas through repeated local
searches. Improved convergence speed and solution
accuracy result from the system's ability to effectively
exploit attractive regions of the search space during this
iterative process. In order to avoid any local optima, ILS
first conducts a local search on the selected bacteria, or
the best candidate solution found by BCO. This is
followed by a perturbation phase that adjusts the solution
only slightly. The enhanced result is then selected based

Algorithm 3: IBCO algorithm

Inputs: Population size (S), Chemotaxis step

(N.), Reproduction (N,.), Probability (p..),

Maximum iteration (Max_Iter), and objective
function f(x)

Outputs: best solutions (Xpes:)

Step 1: Initialize the essential parameters

Step 2: while (the maximum iteration is not met) do

Step 3: Chemotaxis & communications

Step 4: Elimination and reproduction

Step 5: Migration

Step 6 Position updating using ILS (Algorithm 2)

Step 7: End while

Step 8: If the termination criteria are not satisfied then
Go to Step 2. Otherwise, stop the process

Step 8: Store final position as best

on fitness evaluation after a second local search is
directed on the perturbed solution. For a predetermined
number of rounds, this process is repeated, enabling the
hybrid BCO-ILS algorithm to successfully traverse
intricate, multimodal environments. Overall, the addition
of ILS transforms BCO from a largely exploratory
optimizer into a more robust, balanced method that can
more effectively solve high-dimensional, nonlinear
optimization problems. By improving the exploration and
exploitation capabiliies of BCO algorithms, ILS
algorithms are essential to BCO algorithms. To solve
optimization problems, they frequently entail groups of
agents interacting with one another and their
surroundings. Moreover, the local optima condition in
which the bacteria settle too quickly on less-than-ideal
solutions—may affect the BCO. By continuously
improving the solutions, ILS helps to mitigate this problem
by preventing premature convergence and facilitating
more efficient bacteria exploration of the search space.
ILS helps refine solutions and approach the global
optimum. Bacterial Colony Optimization (BCO) and
lterative Local Search (ILS integration) are based on a
global-to-local strategy of optimization. First, BCO
conducts a global exploration, by defining each bacterium
as a candidate solution within the search space by
updating it in response to chemotaxis, reproduction, and
elimination dispersal. Following each BCO step, the most
successful bacterial solutions are selected as the starting
points for ILS. The LS algorithm will then proceed with a
local search, which should closely focus on these
solutions by more carefully applying small perturbations
to neighborhoods until the solutions are optimized. In
case a locally perturbed solution has a better fitness, it
substitutes the current one. The developed solutions are
recycled into the bacterial population, and they drive
further global exploration. This collaboration enables
BCO to prevent untimely convergence and ILS to improve
finer exploitation. Consequently, the hybrid BCO-ILS
system has higher convergence time, high-quality
solutions, and high stability. Algorithm 3 presents the
step-by-step procedure for IBCO.

E. Proposed IBCO-ERNN

A progressive loss of bone density is the hallmark of
osteoporosis. Time-series data, such as assessments
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of bone density, hormone levels, lifestyle factors, and
genetic predispositions, are frequently found in patients'
medical records. This sequential data can be analysed
using ElIman RNNs to find patterns and variations that
point to the onset or progression of osteoporosis. Elman
RNNs can accurately describe the evolution of
osteoporosis-related parameters over extended periods
because they are well suited to capturing long-term
dependencies in data. This may aid in the early detection
and monitoring of the disease. These diverse data
modalities can be combined into a single representation
using Elman RNNs, enabling thorough analysis and
interpretation to improve illness identification. However,

the conventional ERNN employs the gradient descent
method during the training process. The optimal ML
architecture and appropriate vector sample weighting are
among the many model parameters sought using the Sl
technique. Fig.2 shows the overview of the proposed
method. Hence, ERNN has many drawbacks, including
local minima, low accuracy, and a slow convergence rate.
In this study, IBCO is suggested as a means of
determining the optimal classification percentage,
minimizing error, and optimizing the IBCO-ERNN
hyperparameters of the ERNN, such as weights and bias.
The IBCO algorithm is an algorithm that can directly work
on the parameter space of the ERNN by encoding
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Algorithm 4: Proposed optimized ERNN algorithm

Inputs: Training set, ERNN architecture, Population
size (S), Chemotaxis step (N.), Reproduction
(Nye), Probability (p,.), Maximum iteration
(Max_Iter), and objective function f(x)

Outputs: optimized ERNN parameters

Step 1: Initialize parameters

Step 2: Normalize the data

Step 3: Create training and test datasets from the data

Step 4: While a small MSE value is not met

Step 5: Train the ERNN
Step 5.1: The ERNN are optimized by the IBCO

(Algorithm 1)
Step 5.2: Calculate the MSE value for each
bacterium for terminating the process
Step 5.3: The final position of IBCO is
considered as an optimal parameter of
ERNN

Step 6: The trained model is evaluated using the test

dataset that has the optimal weights and bias.

network weights, recurrent connections, and bias terms
as solutions in a bacterium. At chemotaxis, replication,
and elimination dispersal stages, the multidimensional
ERNN search space is searched by each bacterium to
reduce the classification error. The most successful
bacterium gives the globally optimized parameters of the
ERNN and leads to a faster convergence process,
prevention of getting stuck on local minima, and high
prediction accuracy. The experiment begins with
gathering and pre-processing the datasets using the
suggested IBCO-ERNN. In the proposed method,
normalized data is fed into the optimized ERNN model.
ERNN is trained and optimized with IBCO.

Every bacterium is a candidate ERNN solution in the
form of weights and bias values. The joint exploration of
the high-dimensional ERNN parameter space is done by
the bacterial population. As part of chemotaxis, bacteria
do tumble and perform swimming maneuvers, which
adjust the parameters in ERNN. The fitness function of
the ERNN is the classification error after every movement.
Bacteria are drawn to parameter areas that produce
reduced prediction error. During the reproduction phase,
the process of duplication of the bacteria is carried out,
and the weak ones are killed. This increases the
optimization of potential ERNN settings. Randomness is
created by an elimination-dispersal process to overcome
local optima. Accordingly, BCO allows optimizing the
ERNN parameters globally at a faster rate of convergence
and precision.

The optimization of weights and biases in an ERNN
using an IBCO algorithm significantly enhances the
network's learning capability and generalization
performance. Weights and biases are vital components in
any neural network, as they regulate how input data is
transformed and how the network learns patterns across
time steps. The IBCO improves the standard BCO
algorithm by integrating ILS. Each bacterium in the IBCO
population encodes a potential set of ERNN weights and
biases. Through chemotaxis, reproduction, and
elimination-dispersal, the algorithm explores the solution

space, evaluating each bacterium based on the ERNN's
predictive performance using the encoded parameters.
The addition of ILS further refines promising solutions,
helping the algorithm escape local optima and converge
faster. This hybrid optimization process ensures that the
ERNN achieves higher accuracy, faster convergence,
and improved performance on complex medical data
classification.

Each bacterium is treated as a search agent that
represents an initial candidate solution. During training,
the position of every agent is updated by minimizing the
objective function. Using the objective function and the
initial parameter settings, IBCO searches for the optimal
ERNN value. The resulting output vectors are then
denormalized to recover the expected values.
Experiments were carried out to confirm prediction
consistency, demonstrating that the S| approach can
generate near-optimal solutions. The optimized method
uses the mean square error (MSE) for calculating its
fitness values, which are defined as Eq. (10) as follows
[10],

MSE = YR_1(t — yi)* (10)
where, t,-target output, y,- yk-predicted value, and n -

number of data samples. Algorithm 4 shows the IBCO-
ERNN method.

V. Experimental investigations

Analysing experimental results in osteoporosis disease
detection involves examining the performance of different
detection models in identifying the presence or
progression of osteoporosis using various datasets and
evaluation metrics. The present study proposed a new
optimized ERNN based on IBCO for detecting
osteoporosis diseases. To maximize detection accuracy,
minimize error, and optimize ERNN weights and biases,
the current work presented new Sl-based optimization
strategies called IBCO. The S| method is used to
determine the optimal architecture, sample weighting,
and biases for the vectors. The ERNN technique needs
the connection weight and bias value set, which are
generated by the IBCO algorithm utilizing a bacterium's
position as a dimension. The network output error on the
specified training sample and the number of connection
weights with the bias value make up the fithess values.
To compare the effectiveness of the suggested strategies,
averages of the results are used. Based on their capacity
for learning and generalization, they are compared. The
performance of the suggested IBCO-ERNN is compared
with various benchmark prediction procedures such as
BPNN [33], ERNN [34], GA-ERNN [35], PSO-ERNN [36],
Adaptive PSO-ERNN (APSO-ERNN) [37], and BCO-
ERNN [38]. The performance of the suggested IBCO-
ERNN may be thoroughly and pertinently assessed
thanks to the selection of ERNN-BCO, PSO-ERNN, GA-
ERNN, standard ERNN, and BPNN as benchmark
models. These models encompass a range of
optimization techniques and neural network designs
frequently used in medical prediction problems. The study
successfully illustrates the advancements made possible
by the improved BCO technique by using both BPNN and
other conventional models, as well as optimized recurrent
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Table 2. Details about the dataset’s properties

S.No Attributes Attributes descriptions
name

1. Age Patient age

2. BMI Body Mass Index

3. Ethnicity Patient ethnicity

4. Gender Patient gender

5. Height Height during standing

6. FN_BMD BMD of the femoral neck

7. FN BMC BMC of the femoral neck

8. FN_A moral neck area

9. LMS BMD BMD of total spin

10. LMS BMC Total spine BMC

11. LMS_A Total spine area

12. Weight Body weight

13. Class Disease (1) / non-disease (-

1)

Table 3. Attributes details for each dataset

Datasets f Input Output features
eatures

Femoral 1-9 Features
neck
Lumber 1-6 and 10-12 13 - Feature (Disease
spine features / Non-disease)
Femoral 1-12 Features
and spine

networks like PSO-ERNN and GA-ERNN. This tiered
comparison shows the advantages of the suggested
method in terms of prediction accuracy and model
robustness, as well as its incremental value. Furthermore,
the models' applicability to the field of medical diagnostics
guarantees that the comparative study will always be
significant and grounded in context. The developed
method uses MATLAB 2015b for obtaining comparison
results on Windows 11 with an i5 processor and 16 GB
RAM.

A. Training process

Patient data samples are collected and subsequently
grouped. The classifier uses these groups to identify
diseases. First, it is necessary to extract the pertinent
characteristics that are used to classify samples as either
diseased or normal. The proposed osteoporosis disease
detection system uses the IBCO-ERNN model as its
classifier. After receiving the groupings of samples, it
classifies each sample within the groups as either
diseased or not. Because it is a supervised model, it must
be trained on labeled data before it can be used to
diagnose osteoporosis.

The classifier is trained using a training dataset. It is an
assortment of labeled instances. The collected data
samples X ={xy,x,,...x,} and target label t=
{ti, t,...t,} with a binary class p. There are now just two
possible values for t:[-1,1] and [1, -1]. t:[-1,1]
represents the normal class while t: [1, —1] represents the
attack class. The training technique is used to find the
optimal values for the connection weights and biases
using IBCO, which is then used to generate the

Table 1. Parameters setting for ERNN and BCO

ERNN BCO
Parameter Value Parameter Value
Training BCO .
method Population 100
Actlvgtlon Tansig N, 100
function
F|tne_ss MSE N, 4
function
Learning 0.55 N, 4
rate
No. of 1000 N,, 2
epochs
Errorrate  0.005 Py 0.25
Weight -0.5 and (4 and 0.01 and
range 0.5 Chnin 0.2
Dropout 0.5
value

associated weights and biases. Initially, a population of
target vectors is initialized.

B. Datasets

The present research work focused on four datasets
based on the Femoral neck, Lumbar spine, Femoral and
Spine, and BMD datasets. The first three datasets were
gathered from the NGANES-III archive, which is open to
the public [39]. The following datasets were used to test
the forecast technique's performance: Femoral neck,
Lumbar spine, and Femoral and Spine dataset. Tables 1
and 2 summarize the dataset’s details. The total number
of samples is 2400, which are collected from 13 different
features, the first 12 of which are features and the last 13
of which are class labels. It has been demonstrated that
BMD measurements from NHANES are of higher quality
than those from other studies. T-scores are used for
categorizing input records using class labels. T-scores
are calculated using the following Eq.(11) as shown in [11]
by comparing BMD values to those of gender-matched
young normal persons.

T — score = BMDsubject_BMDreferencegroup

(11)
SDreferencegraup

The BMD values are utilized to calculate the T-score
using the NHANES reference group data as a guide.
These NHANES publications report the mean BMD and
standard deviation for the reference group. T-scores are
employed to make an osteoporosis diagnosis following
the "Gold Standards" established by the WHO [40-42].
The "Bone Mineral Density" open-source dataset,
published by He, Linfeng, was used in this study. It is
available on Harvard Dataverse
(https://data.harvard.edu/dataverse). There were 40
variables and 1537 observations in the original dataset.
"OP" is the goal variable for this dataset [43]. “Bone
density and DXA T-scores for the lumbar 14 (L1-4),
femoral neck (FN), and thoracolumbar (TL) bones made
up six of the 39 remaining characteristics. The patient's
hematological and biochemical profiles are made up of
eleven characteristics. Uric acid (URIC), creatinine
(CREA), calcium (Ca), phosphorus (P), magnesium (Mg),
and blood urea nitrogen (BUN) were the renal profile
indicators. The levels of aspartate aminotransferase
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(AST) and alanine transaminase (ALT) comprised the
liver panel. High-Density Lipoprotein Cholesterol (HDL-C)
and Low-Density Lipoprotein Cholesterol (LDL-C)” were
used to measure the lipid profile. Fasting Blood Sugar
was denoted by FBG. The administration of medications

such as calcium, calcitriol, bisphosphonates, and
calcitonin was based on four factors. Eleven
characteristics included the presence of additional

osteoporosis-related conditions in the patient. Information
regarding the patient's drinking and smoking patterns was
gathered through two features. Gender, age, height,
weight, and BMI were the five factors.

C. Data preprocessing

There are no missing or redundant values in the Femoral
neck, Lumber spine, and Femoral and spine datasets.
The BMD dataset has some missing values. The BMD
datasets often include missing values (e.g., BMI, calcium
level, age). They are processed through mean/median
imputation or statistical estimation. The categories of
osteoporosis (Normal, Osteopenia, Osteoporosis) are
numericalized to be used in the classification models.
After removing missing values attributes, there were now
30 variables and 1492 samples in the dataset for taking
into experiments. The acquired datasets are normalized
using the min-max approach [44]. The training set and
the testing set are separated from the patient's dataset.
60% of the input data is utilized to train the proposed
classifier, while the remaining 40% is sent to the testing
set. The evaluation is carried out using the test results.
Each dataset is divided into training and testing segments
at random.

D. Parameter’s settings

The right parameters of machine learning approaches can
greatly improve a solution's performance. In the current
study, a single-layer architecture comprising input,
hidden, and output layers, with linear, log-sigmoid, and
log-sigmoid transfer functions, was considered. One
hundred hidden neurons are allowed to be the maximum

number of hidden neurons in the hidden layer. However,
when choosing a large number of neurons, the learning
process may become overfitting, and when choosing a
small number of neurons in the hidden layer, it may
become underfitting. Hence, the present study selects
the optimal number of neurons in the hidden layer
between 10 and 100. The rate of learning is 0.5. 1000
epochs are the maximum number of trials for each
problem. Dropout in recurrent connections should be
applied carefully, as it may damage the temporal
dependencies the model captures; a value of 0.5 was
selected. Twenty trials are conducted on each dataset to
validate these methods. The chemotaxis step values and
swim step determine the BCO convergence rate, which is
denoted by N and N, , spectively. The N is set as 100
,and the swim step is selected as N, =4. The
reproduction value is set as N,, = 4. The dispersal step
value is set as N,; = 2. The step size, probability of
elimination, and dispersal values are all significant
features in defining the BCO's performance. Hence, P,;is
set as 0.25. The lowest and highest chemotaxis step size
values are selected as Cp,;, =0.01and G, =02 ,
respectively. The details are shown in Table 3.

E. Performance analysers

Performance evaluators are employed to measure the
efficiency of the ML approach. Four distinct performance
indicators, including accuracy, precision, recall, and f-
measures, were employed in this study to examine the
effectiveness of prediction algorithms. In this study, a
threshold of 0.5 is commonly used to distinguish between
positive and negative classes. The model's accuracy and
clinical relevance for the early and trustworthy detection
of osteoporosis are guaranteed by the selection of
suitable evaluation measures and thresholds. The
comparison algorithms are examined using accuracy to
measure the excellence of detection, which is defined as
Eq. 12 [45],
TP+TN

Accuracy = —————x 100
TP+FP+TN+FN

(12)

Table 4. Performance comparisons of IBCO-ERNN for femoral neck

Algorithms  Accuracy Precision Recall F-Measure
BPNN 71.20 67.51 66.22 7512
ERNN 79.62 74.19 75.27 78.26
GA-ERNN 82.64 79.31 78.17 81.94
PSO-ERNN 84.27 82.38 86.59 85.73
APSO-ERNN 89.48 86.61 90.52 91.05
BCO-ERNN 92.92 89.26 93.72 94.78
IBCO-ERNN 95.61 91.48 95.07 96.02

Table 5. Performance comparisons of IBCO-ERNN for Lumbar spine

Algorithms  Accuracy Precision Recall F-Measure
BPNN 68.74 74.58 68.79 76.72
ERNN 75.47 78.46 75.62 79.59
GA-ERNN 84.94 83.53 83.85 83.19
PSO-ERNN 87.48 87.59 86.94 88.78
APSO-ERNN 90.62 92.20 92.39 94.46
BCO-ERNN 94.04 94.82 93.27 96.53
IBCO-ERNN 96.26 97.37 95.82 97.84
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Table 6. Performance comparison of IBCO-ERNN for femoral and spine

Algorithms  Accuracy Precision Recall F-Measure
BPNN 67.89 70.63 67.06 70.83
ERNN 73.52 81.06 75.56 77.03
GA-ERNN 81.69 87.59 81.38 83.48
PSO-ERNN 87.12 91.71 86.63 88.54
APSO-ERNN 93.07 93.44 90.74 91.36
BCO-ERNN 95.95 95.59 92.37 94.83
IBCO-ERNN 97.54 98.04 95.19 96.54

Table 7. Performance comparison of IBCO-ERNN for BMD datasets

Algorithms  Accuracy Precision Recall F-Measure
BPNN 79.36 72.37 75.24 73.77
ERNN 85.73 83.94 79.64 81.73
GA-ERNN 89.31 88.51 84.72 86.57
PSO-ERNN 92.46 90.39 87.48 88.91
APSO-ERNN 94.34 93.63 92.38 93.00
BCO-ERNN 96.02 96.95 94.72 95.82
IBCO-ERNN 98.63 98.36 97.93 98.14

The ratio of normal data detected to the total number of
aberrant and normal individuals found is known as
precision, which is defined as Eq. 13 [45],
Precision = ——— %100 (13)
TP+FP

The recall is defined as the ratio of the number of normal
patients that were identified to the total number of patients
that were present in the dataset, which is determined as
Eq. 14 [45],

TP
TP+FN (14)
The F-measure is the harmonic mean of the metrics for
recall and precision, which is defined as Eq. 15 [45],

2x(PrecisionxRecall)
Precision+Recall * 100 (15)
False negative (FN) refers to diseases that were predicted
incorrectly, while false positive (FP) refers to incorrectly
predicted normal. True positive (TP) indicates a disease
that was accurately predicted, whereas true negative (TN)
indicates a normal state.

Recall = * 100

F — Measures =

V. Discussions

The objective of the current study is to identify
osteoporosis disease using numerical datasets that have
been divided into disease groups (osteoporosis and non-
osteoporosis) based on BMD values. It has been shown
possible to identify osteoporosis from scans of the femoral
neck, spine, combined femoral neck and spine, and BMD
using an optimized ERNN. When osteoporosis-related
medical data contain time-series elements, ERNNs can
capture sequential and time-dependent patterns through
their context layer, which stores hidden-layer outputs from
the previous time step. By learning intricate nonlinear
correlations between clinical factors, ERNNs can
increase the accuracy of diagnoses. Hyperparameters
have a significant impact on ERNN performance. IBCO
reduces training error and improves generalization to
unseen osteoporosis data by helping to fine-tune the
ERNN to ideal configurations. Patients are classified as
osteoporotic or non-osteoporotic using IBCO-ERNN.

usually demonstrates gains in sensitivity, specificity, and
accuracy when compared to benchmark techniques.

The accuracy, precision, recall, and F-measure are
applied to the prediction method for evaluating its
performance. The creation and assessment of the model
heavily rely on the ideas of testing and training. Making
the ERNN capable of identifying patterns and correlations
in sequential data is the main objective of training. The
network is presented with a series of input data and
corresponding target outputs during the training phase.
To reduce the discrepancy between its predictions and
the actual targets, the model modifies its weights and
biases. The trained Elman's capacity to generalize to new
data is assessed during the testing phase. The objective
is to evaluate the model's predictive performance on data
that was not used in training. In testing, fresh, unused
input data sequences are fed into the ERNN. The model
produces forecasts, which are then contrasted with the
actual target outputs.

Table 4 displays the training results of the femoral
neck. shows the training performance
comparisons of the compared prediction methods for a
spin dataset. Table 6 demonstrate femoral neck
performance comparisons, with the [IBCO-ERNN
technique outperforming the compared prediction
algorithms. Similarly, Table 7 demonstrate BMD dataset
performance comparisons, with the IBCO-ERNN
technique outperforming compared prediction algorithms.
According to the results, though trained with all datasets,
optimized ERNN demonstrated good and enhanced
classification accuracy. From Table 4, the Use of IBCO-
ERNN for the classification of femoral neck datasets
resulted in the greatest accuracy of 95.61, Precision of
91.48, Recall of 95.07, and F-measure of 96.02. From
Table 5, the Use of IBCO -ERNN for the classification of
femoral neck datasets resulted in the greatest accuracy
of 96.26, Precision of 97.37, Recall of 95.82, and F-
measure of 97.84. From Table 6, the use of IBCO -ERNN
for the classification of femoral neck datasets resulted in
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the greatest classification accuracy of 97.54, Precision of
98.04, Recall of 95.19 and F-measure of 96.54. From
Table 7, the Use of IBCO-ERNN for the classification of
femoral neck datasets resulted in the greatest
classification accuracy of 98.63, Precision of 98.36,
Recall of 97.93, and F-measure of 98.14. Figs. 3, 4, 5,
and 6_reveal the testing detection results for all related
algorithms when applying four datasets based on
performance indicators. According to the testing results,
though trained with all datasets, optimized ERNN
demonstrated good and enhanced classification
accuracy.

In the context of ML algorithms, convergence analysis
usually refers to examining how an algorithm behaves
when it iteratively adjusts its parameters to minimize a
specific objective/loss. Understanding if the algorithm will
reach a solution, how soon it will converge, and whether
it will stick to a suboptimal solution or converge to the ideal
one is all made possible by the convergence analysis.
Convergence investigation of the BCO-ERNN is shown in
Figs. 7,8,9 and 10 and it is compared to the APSO-ERNN
and the PSO-ERNN. The suggested BCO-ERNN
algorithm is converged with minimal error, according to
the convergence analysis. For the examination of
numerical results, seven other prediction algorithms have
been compared with the suggested BCO-ERNN
algorithm. But to compare the convergence investigation
and better understand the convergence curve, three

present-day methods are taken into consideration Figs.
7,8,9 and 10 show that for four datasets, BCO-ERNN
provides considerably lower RMSE values towards
convergence. ERNN is well-suited for scaling to more
intricate and high-dimensional medical datasets because
of its modular design and the enhanced bacterial colony
optimization (IBCO) algorithm's optimization capabilities.
The IBCO-ERNN, for example, can efficiently manage
higher data volumes without sacrificing performance if the
model architecture is modified appropriately. This
includes employing batch training, adding regularization
techniques, and increasing the number of hidden
neurons. This paradigm can also be used for other
medical prediction problems where temporal patterns and
nonlinear interactions are important, such as cancer
prognosis, cardiovascular illness, or diabetes early
detection. The study can establish IBCO-ERNN as a
flexible and scalable solution within the broader field of
medical data analytics by emphasizing its potential.

The relevance and usefulness of the research would
be greatly increased by discussing how the IBCO-ERNN
approach could be extended to additional medical
prediction scenarios or adapted for larger datasets.
Through the examination of longitudinal data, improved
ERNN can identify minute modifications in bone health
that may occur before osteoporosis manifests. By
facilitating early detection and intervention, fractures and
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other problems linked to advanced osteoporosis may be
avoided.

The goal of osteoporosis diagnosis was used to
assess the efficacy of many neural network models and
their optimization techniques. BPNN, ERNN, and their
variants optimized with metaheuristic algorithms such as
GA, PSO, APSO, BCO, and the proposed IBCO were
among that group. Being a conventional feedforward
network, BPNN [33] is unable to simulate contextual
linkages and temporal dependencies among sequential
variables, which are frequently essential when examining
medical data that changes over time, like bone mineral
density. Its dependence on gradient descent also
increases the likelihood of becoming stuck in local
minima. Although ERNN's [34] context memory and
temporal modelling capabilities allow it to beat BPNN, it
still has issues with parameter tweaking and convergence
to local optima. GA-ERNN [35] expands the search space
by incorporating evolutionary ideas into ERNN training.
However, because of random crossover and mutation
rates, GA's convergence is frequently slower and more
unstable. Because PSO-ERNN [36] uses fewer
hyperparameters and a social-based learning approach,
it offers a significant improvement over GA-ERNN. It finds
optimal solutions more likely and converges more quickly.
However, typical PSO may still have a lack of variation

and premature convergence in subsequent iterations.
Better performance tweaking throughout the learning
phase is made possible by PSO-ERNN, which adds
adaptability to the PSO parameters. Although it
outperforms IPSO-ERNN [37] in terms of avoiding local
optima and improving generalization, its performance is
still reliant on initial parameter values and does not draw
inspiration from biology to generate natural variation.
BCO-ERNN [38] does a good job at capturing ideal ERNN
configurations because to its optimization influenced by
bacteria. Its static search algorithms and defined step
sizes, however, might make it less accurate and efficient.
IBCO-ERNN continuously beats other models in terms of
classification accuracy, convergence speed, and
robustness for osteoporosis detection, according to the
experimental comparison. Because it can adaptively
explore and adjust the neural network parameters, it is
especially well-suited for tasks involving medical
diagnosis where accuracy and dependability are
essential. IBCO-ERNN is therefore a clever and
promising way to help doctors identify osteoporosis early
and accurately.

Generally, the variants that do solve these problems
partially are metaheuristic-assisted variants like GA-
ERNN and PSO-ERNN, which add the global search
ability. Nevertheless, GA-ERNN is affected by premature
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convergence and genetic drift, whereas PSO-ERNN is  prediction accuracy that is higher than that of

very sensitive to velocity control parameters, which tends
to lead to oscillatory behaviour and unstable convergence
when dealing with noisy medical features. Despite the
increased flexibility of APSO-ERNN, it remains
inadequate in exploiting fine-tuning of the various ERNN
parameters to areas that are optimal. The BCO-ERNN
model is highly effective at exploration in bacterial
chemotaxis, but it exhibits low local refinement, which
leads to stagnation near near-optimal solutions.
Conversely, IBCO-ERNN combines the processes of ILS
into the bacterial evolution process, which allows a
diversified global search and an increased local
exploitation. The hybrid method is especially efficient
when predicting osteoporosis, in which a minor change in
parameters can have a massive impact on sensitivity and
false negatives. This makes IBCO-ERNN better at
reducing false negatives, improving sensitivity, and
generalizing, particularly for early-stage osteoporosis
cases. The findings in these studies validate the
hypothesis that the suggested IBCO-ERNN fits the
complexity and clinical needs of osteoporosis BMD
datasets, which explain its superior performance
compared to current benchmark models. When used
properly, the proposed method can produce osteoporosis

conventional RNNs. A reliable prediction method can
help medical professionals identify high-risk patients
early, enabling prompt treatment to reduce fractures and
improve quality of life. Also, it opens up new possibilities
for reliable model training and adaptability by promoting
the investigation of biologically inspired optimization
algorithms in medical Al applications. However, the IBCO
involves several hyperparameters, and inappropriate
tuning can degrade performance. Hence, the
performance of IBCO heavily depends on the careful
selection of these parameters and population
initializations. Additionally, optimizing RNNs with IBCO
can be computationally expensive due to the iterative
nature and complexity of training

Despite the fact that the proposed model is accurate
in prediction, it has clinical significance in enhancing the
detection of risks at an earlier stage of osteoporosis. The
practical use of such a system would be in the form of a
pre-screening tool to put high-risk patients on the list of
scanning with DXA and early interventions to focus the
care on treating fractures rather than preventing them.
Improved sensitivity will reduce missed diagnoses,
thereby enabling prompt implementation of lifestyle
changes and pharmacological treatment, both of which
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have been shown to reduce fracture risk. In healthcare,
effective resource allocation is facilitated by accurate risk
stratification, which helps avoid unnecessary imaging
while ensuring that vulnerable patients receive necessary
care in a timely manner. As a result, the performance
metrics that have been reported correspond to the
tangible clinical outcomes, such as the decreased number
of fractures and the enhanced patient quality of life.
Although the model of IBCO-ERNN has high predictive
accuracy, the extent of its interpretability is a major
limitation to its practical application in clinical settings. In
clinical practices, decision-makers would need clear logic
to know why a patient may be considered to be at high
risk, especially in preventive diseases such as
osteoporosis, where decisions on prolonged treatment
may be concerned. Being a hybrid operation framework
of deep learning and a metaheuristic framework, IBCO-
ERNN is a black-box model, which only gives little
information regarding the contribution by features or the
decision pathways. This unaccountability could diminish
clinician confidence and hinder acceptance of it as a
decision support tool in its own right, regardless of
excellent performance scores.

VI. Conclusions

This research was to build an effective, solid, and
practical approach to predict osteoporosis early in the
development of advanced learning and optimization
strategies. Recognizing that classical learning algorithms
have limited accuracy, often fall into local minima, and
converge slowly, this work presents an IBCO-ERNN. This
was aimed at optimizing the weights and biases of the
ERNN through the IBCO algorithm, which ILS augmented
to allow optimal prediction and ensure that it is possible to
identify individuals at risk of osteoporosis even before the
development of the condition and its consequent
manifestation of fractures. The proposed model was
assessed by conducting numerous experiments on the
four kinds of osteoporosis data sets, namely Femoral
Neck, Lumbar Spine, Femoral and Spine, and BMD. In all
the datasets, the IBCO-ERNN performed better than any
other optimized models and baseline models did. The
IBCO-ERNN achieved 97.01%, 96.31%, 95.50%, and
97.14% accuracy, precision, recall, and F-measure,
respectively, indicating effective classification
performance and reliability across varied diagnostic
cases. Although these findings are encouraging, the
proposed method is not without limitations. Adding ILS to
the BCO framework makes the problem more
computationally complex, which can be problematic for
large-scale online applications. Besides, the performance
of the model relies extensively on the quality of high-
quality processed input data. Furthermore, the IBCO-
ERNN and most deep learning systems are not
interpretable; therefore, its use in clinical practice may be
limited. As a way of overcoming these drawbacks and
expanding on the existing work, some future directions
are put forward. Incorporating explainable Al (XAl)
methods may enhance interpretability and clarity of
predictive models. Creating lighter-weight versions of the
IBCO-ERNN may make the latter a feasible solution that
can be deployed in real-time mobile or embedded

healthcare systems. Moreover, the inclusion of
multimodal data like genetic data, medical images, and
lifestyle data may amplify the model and make it diagnose
more accurately.
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