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Abstract: Osteoporosis is a silent disease before significant fragility fractures despite its high prevalence, and 
its screening rate is low.  In predictive healthcare analytics, the Elman recurrent neural network (ERNN) has 
been widely used as a learning technique.  Traditional learning algorithms have some limitations, such as slow 
convergence rates and local minima that prevent gradient descent from finding the global minimum of the error 
function.  The main goal is to precisely estimate each individual's risk of developing osteoporosis. These 
forecasts are essential for prompt diagnosis and treatment, which have a significant influence on patient 
outcomes.  Hence, the present research focuses on making a more efficient prediction method based on an 
optimized Elman recurrent neural network (ERNN) for predicting osteoporosis diseases.  An optimized ERNN 
method, IBCO-ERNN, improved bacterial colony optimization (IBCO) by optimizing the ERNN weights and 
biases.  The IBCO approach uses an iterative local search (ILS) algorithm to enhance convergence rate and 
avoid the local optima problem of conventional BCO.  Subsequently, the IBCO is used to optimize the ERNN's 
weights and biases, thereby improving convergence speed and detection rate.  The effectiveness of IBCO-
ERNN is evaluated using four different types of osteoporosis datasets: Femoral neck, Lumbar spine, Femoral 
and Spine, and BMD datasets.  The proposed IBCO-ERNN produced higher accuracy at 95.61%, 96.26%, 97.26%, 
and 97.54 % for the Femoral neck, Lumbar spine, Femoral, and Spine datasets, respectively.  The experimental 
findings demonstrated that, compared with other predictors, the proposed IBCO-ERNN achieved respectable 

accuracy and rapid convergence.   
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I. Introduction  

Osteoporosis is a disorder of the bones that occurs when 
bone mass and bone mineral density (BMD) decline, or 
when changes occur to the composition and strength of 
bone.  This can lead to bone density loss and an 
increased risk of fractures or broken bones.  So fragile 
that falling or even small forces like leaning over or 
coughing might cause a fracture.  The most common 
fractures caused by osteoporosis are those of the wrist, 
hip, and spine, which can afflict both men and women 
from all backgrounds [1].   Osteoporosis is a silent 
disease, and even if it does not affect the patient 
noticeably until a fragility fracture is detected, researchers 
claim that more than 70 percent of patients are not aware 
of the disease until a fracture event has taken place, and 
a screening for osteoporosis is not more than 30 percent 
in high-risk groups. This diagnosis has serious clinical and 
financial outcomes because osteoporosis-related 
fractures cause millions of cases per year and place a 
huge healthcare burden.  Repairing already brittle 
skeletons or preventing bone loss can be accomplished 
with a balanced diet, medication, and weight-bearing 
exercise. Often, there are no signs in the early stages of 
bone loss. Asian and White women are most at risk, 

especially those who are older and have gone through 
menopause. However, if your bones have been 
compromised by osteoporosis, you may experience 
height loss over time, back pain from a damaged or 
fractured vertebra, a bent posture, and an unexpectedly 
rapid fracture [2].  Age-related changes in BMD and rising 
fracture rates result in morbidity and sometimes mortality 
[3].   

The only accurate osteoporosis screening test is the 
BMD, and its value is derived from the bone area and 
bone mineral content (BMC).   The tests are primarily 
conducted at the lumbar spine and femoral neck region of 
the skeleton. DXA is the most widely used technique for 
verifying an osteoporosis diagnosis [4].  The hip and spine 
are the recommended sites for DXA assessment of BMD 
by the World Health Organization (WHO).  Based on BMD 
values provided by DXA, the National Osteoporosis 
Foundation (NOF) and the WHO developed osteoporosis 
criteria.  DXA uses T- and Z-scores to report BMD test 
results.  In absolute terms, areal BMD is expressed as 
grams of mineral per square centimeter of scanned area 
(g/cm2).  T-scores compare the subject's BMD to that of 
young, healthy adults of the same gender. The Z-score 
compares an individual's BMD with that of a reference 
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group matched for age, gender, and ethnicity [5].   
According to the WHO, a T-score above 1.0 is considered 
normal, one between 1.0 and 2.5 is considered 
osteopenia, and one below 2.5 is considered 
osteoporosis.  Based on the T-score, we classified the 
BMD (g/cm2) and made a diagnosis (normal or 
osteoporosis) [6].   

In the field of osteoporosis research, as in other 
research domains, machine learning (ML) can be a 
promising approach that may illuminate individualized 
methods and improve understanding of the condition in 
this unprecedented era of overwhelming medical data [7, 
8].  ML models have been used to predict osteoporosis, 
but they are also limited in that they can easily get stuck 
in local minima, are sensitive to initial weights, and are 
slow to converge, resulting in false-negative predictions, 
which is a costly trait in medical screening. These 
restrictions point to the fact that a more proper and 
effective prediction framework is badly needed to help 
detect osteoporosis earlier and minimize the risks related 
to the fractures.  The ERNN is a kind of ML algorithm 
which applied to solve various real-world applications.  
The neurons that make up the ERNN are joined to the 
nodes of the network's other layers by weighted 
connections. Typically, they have one output layer, one 
input layer, one or more hidden layers, and one recurrent 
layer.  The model now has a memory function, can adapt 
to time-varying systems, and exhibits excellent global 
stability due to the addition of a context layer with a delay 
operator in the hidden layer.  However, trial and error are 
typically used to identify the network structure, which 
includes the number of hidden levels [9].   

The ERNN is thought to be an optimization of the 
BPNN, benefiting from its strengths but unavoidably 
receiving some of its inherent weaknesses, such as the 
ease with which it can become trapped in local minima, 
the speed with which it converges, and the length of 
training time required because of its fixed learning rate, 
as well as the difficulty in determining the number of 
hidden neurons that can affect the model's performance 
and recognition accuracy.  The three most important 
hyperparameters that significantly affect ERNN 
performance are weights and biases, learning rate, and 
hidden neurons.  The traditional ERNN approach involves 
initializing these values at random, which increases the 
degree of uncertainty surrounding ERNN's performance 
[8].   

The accuracy of an ERNN is directly and significantly 
impacted by its weights and biases. While biases modify 
the activation threshold to help the network better fit 
intricate patterns in the input, weights dictate the direction 
and strength of connections between neurons. Weights 
also determine the extent to which previous hidden states 
impact the current output in ERNNs, which process 
temporal sequences [10]. The network may miss crucial 
dependencies if these parameters are not appropriately 
optimized, leading to poor generalization and erroneous 
predictions [11].  Higher prediction accuracy results from 
the ERNN's improved ability to simulate non-linear and 
time-dependent interactions when the weights and biases 
are properly tuned. The network may overfit or underfit 
due to poorly tuned weights. Similarly, improper biases 

can distort activation outputs, hindering neurons' ability to 
learn effectively [12].  

On the other hand, recent work has employed swarm 
intelligence (SI) techniques to enhance ERNN 
performance.  It has been discovered that SI algorithms 
are more advantageous for training ML models due to 
their potential for exploration and exploitation. However, 
the method discussed above has many shortcomings, 
such as premature convergence, low accuracy, and high 
computational time. The BCO is a newly developed SI 
algorithm that can rapidly reach global solutions [11].  
Nevertheless, due to its limited capacity for global 
exploration, BCO is prone to local optima and produces 
unpredictable optimization outcomes. To mitigate this 
shortcoming, a novel BCO utilizing iterative local search 
(ILS) was developed.   

The suggested approach incorporates an ILS-type 
local search algorithm [13]. To provide the IBCO a strong 
chance of breaking out of the local optima, the ILS 
algorithm disrupts the local optimum and conducts some 
local research. As a result, IBCO, an enhanced form of 
BCO based on ILS, strikes a better balance between 
exploration and exploitation. This study's primary 
objectives are to use an IBCO to maximize ERNN 
performance to the global minimum, lower error, and 
expedite learning. The proposed model is important 
because it can optimize ERNN parameters to enhance 
training efficiency, shorten execution time, and accelerate 
learning speed and convergence. In this work, the 
ERNN’s weights and biases are optimized using a novel 
IBCO approach. 

In this paper, the new optimized ERNN algorithm is 
based on IBCO for predicting osteoporosis diseases.  
One recently developed SI algorithm is IBCO, which can 
find global solutions efficiently. Hence, this study uses the 
IBCO, a recently suggested swarm intelligence 
optimization model, to find appropriate hyperparameters 
of ERNN to improve its performance.  The primary 
objective of the learning is to map inputs to outputs to 
identify the optimal set of weights and biases for high 
accuracy.  An upgraded version of the optimized ERNN is 
used to carry out the proposed system's objective, 
enabling healthcare professionals to take preventative 
action when necessary to prevent the development of 
osteoporosis.  The contribution of the paper is as follows,  

1. The suggested optimized ERNN to forecast 
osteoporosis disease 

2. The weights and biases of the ERNN are trained 
using the IBCO to improve generalization 
performance and prediction accuracy 

3. The performance of the suggested optimized ERNN 
approach is examined using four different 
osteoporosis datasets 

4. The optimized ERNN's robustness in comparison to 
some benchmark prediction models 

The following sections make up the remainder of the 
article: A few recent research on the diagnosis of 
osteoporosis disease is covered in section 2.  The ERNN 
approach is covered in section 3.  BCO and ILS 
approaches are discussed in Sections 4 and 5 
respectively.  Section 6 discussed In Section 7, the 
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suggested optimized IBCO-ERNN approach is covered.  
Section 8 discusses the experimental findings, while 
Sections 8 and 9 provides the discussions and conclusion 
respectively.  

  

II. Related works  

Osteoporosis is a soundless destroyer disease that 
primarily affects elderly persons due to bone fragility and 
fracture.  Osteoporosis patients can be saved by early 
and accurate diagnosis.   Numerous research has been 
recently used ML algorithms to predict osteoporosis using 
different datasets, including numerical and image 
datasets.  Hence, numerous articles about investigations 
on osteoporosis disease prediction are addressed in the 
section that follows.  For bone density screening utilizing 
chest low-dose computed tomography, this study created 
an automatic diagnostic method combining ML-based 
radio mic texture analysis and segmentation.  
Opportunistic screening is made possible by the 
presented technology without the use of a special 
phantom or quantitative computed tomography (CT).  The 
created method might be utilized as an auxiliary for 
opportunistic screening or for patients who are unqualified 
for screening with dual-energy X-ray absorptiometry, and 
it could be included in the existing clinical workflow [14].   
A classification task for CT-based osteopenia and 
osteoporosis diagnosis was developed [15].    The newly 
developed method also makes use of a multi-view CT, 
known as MVCTNet, which uses two images from the 
original CT picture to automatically classify osteopenia 
and osteoporosis.  The MVCTNet gathers multiple 
features from the pictures produced by our multi-view 
setups, in contrast to other techniques that use a single 
CT image as input.  A new deep learning is developed to 
forecast T-score and BMD from chest X-rays, one of the 
most popular, accessible, and affordable medical imaging 
assessment techniques [16].  Patients with osteoporosis 
and diabetes have a hybrid model that combines 
XGBoost and deep neural networks to forecast their 
fracture risk and examine the impact of the patient's 
physiological variables on fracture risk [17].   Using five 
convolutional neural network (CNN) representations, 
osteoporosis was determined from the hip radiographs of 
1131 individuals who received both skeletal BMD testing 
and hip radiography at a single general hospital [18].   

The developed prediction approach uses ML to 
categorize osteoporosis from panoramic radiographs 
taken during dental treatment.  A dataset of 778 pictures 
was gathered from patients who underwent dental 
panoramic radiography and skeletal BMD measurements 
at the same general hospital for objective labeling.  Using 
CNN models such as ResNet-18, -50, and -152 and 
EfficientNet-b0, -b3, and -b7, osteoporosis was evaluated 
from the oral panoramic radiographs [19].  An innovative 
data preparation technique is suggested and tested on a 
challenging classification data set where different 
classifiers perform on average at less than 50%.  The 
dataset relates to the bone illness osteoporosis, which is 
categorized by low BMD and microstructural degradation 
of bone tissue and increases the risk of fracture. The 
dataset consists of 589 individuals whose diagnoses were 
made via osteal bone densitometry and laboratory testing. 

In all instances, participants were divided into three 
classes using the thirty-three diagnostic parameters for 
osteoporosis risk prediction (normal, osteopenia, and 
osteoporosis) [20].  They created an osteoporosis 
prediction system that accurately assesses the likelihood 
of the disease based on crucial variables including 
calcium levels and smoking behaviors, allowing those at 
high risk to be directed to access the DEXA scanner.   

A more advanced artificial immune system (AIS) is 
used in our suggested system, which enables healthcare 
professionals to take preventive action when it is 
necessary to prevent the early onset of osteoporosis [21].   
The developed model compares the four prediction 
methods that took disease history and lifestyle factors into 
account while predicting the risk of osteoporosis in 
Chongqing adults to choose the best prediction model.  A 
cross-sectional study using a questionnaire and 
convenience sampling, to gather information about 
sickness history and adults' daily routines who received 
dual energy from January 2019 to December 2019. 
Absorption of X-rays [22].  An automated, low-cost 
technique that analyses the cancellous texture of 
radiographs of the hands and wrists to detect the early 
signs of osteoporosis.  The trained classifier model 
performs well in differentiating between participants with 
high bone mass and those with low bone mass [23].  I. M. 
Wani et al. (2023) suggest using CNN to identify 
osteoporosis in X-ray images. In this work, we classified 
the knee joint X-ray pictures into normal, osteopenia, and 
osteoporosis disease groups using the transfer learning 
of deep learning-based CNNs. The primary goals of this 
work are to (i) current a dataset of 381 knee x-rays that 
have been psychologically validated using T-scores and 
(ii) suggest a deep learning method that uses transfer 
learning to categorize various disease phases. 

 

III. Methods  

A. ERNN 

ERNN is a type of feedback neural network; it builds on 
BPNN by adding a hidden layer that serves as a delay 
operator and memory, giving the network the capacity to 
adapt to dynamic, time-varying properties while 
maintaining strong global stability.   The input, hidden, 
recurrent, and output layers are the four standard layers 
that make up the topology.  The recurrent layer is used to 
remember the hidden layer's output, which resembles a 
step delay operator as shown in Eq. (4) [24].  With a 
BPNN network, the delay and storage of the recurrent 
layer connect the hidden layer's output to its input.  The 
method is sensitive to historical information, and a 
network of internal feedback sources can improve the 
method's capacity for handling dynamic information.  
Fig.1. ERNN framework shows the ERNN framework.  
The scheme can be fine-tuned to time-varying features 
due to its dynamic mapping function, which is made 
possible by memorizing the internal state. The input layer 
is determined in Eq. (1) as follows [24],  
 

𝑋𝑖𝑡(𝑘) = ∑ 𝑋𝑖𝑡(𝑘 − 1)𝑛
𝑖=1                                (1) 

Here, 𝑋𝑖𝑡 - is an input with 𝑛 input neurons at time 𝑡 and 𝑘 

time step.    

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1410
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 430-446                                                e-ISSN: 2656-8632 

 
Manuscript received 15 March 2025; Revised 10 December 2025; Accepted 20 January 2026; Available online 4 February 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1410 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).                            433               

The inputs for each hidden neuron are as in Eq. (2) [24] 

𝑛𝑒𝑡𝑗𝑡(𝑘) = ∑ 𝑊𝑖𝑗𝑋𝑖𝑡(𝑘 − 1) +𝑛
𝑖=1 ∑ 𝐶𝑗𝑅𝑗𝑡(𝑘)𝑝

𝑗=1       (2) 

𝑊𝑖𝑗- weights between the input and hidden layers, 𝐶𝑗- 

weights between hidden and recurrent layers.  𝑝 is the 

number of recurrent neurons.  The hidden layer's (𝑍) 

output calculated as shown in Eq. (3) [24] 

𝑍𝑗𝑡(𝑘) = 𝑓(𝑛𝑒𝑡𝑗𝑘(𝑘) = ∑ 𝑊𝑖𝑗𝑋𝑖𝑡(𝑘 − 1) +𝑛
𝑖=1 ∑ 𝐶𝑗𝑅𝑗𝑡 (𝑘)𝑝

𝑗=1

  

     (3)

                 

 

The recurrent layer's (𝑅) result is regarded in Eq. (4)  [24],  

𝑅𝑗𝑡(𝑘) = 𝑍𝑗𝑡(𝑘 − 1)                           (4) 

The output layer's (𝑌) results are measured as Eq. (5) [24] 

𝑌𝑡(𝑘) = 𝑓(∑ 𝑉𝑗𝑍𝑗𝑡(𝑘)𝑝
𝑗=1 )                    (5) 

Here, 𝑉 is weight between hidden and output layer.  ERNN uses 

BPNN to revise weights; the error of the network is defined in 

Eq. (6) [24],  

𝐸 = ∑ (𝑡𝑘 − 𝑦𝑘)2𝑛
𝑘=1                           (6) 

where, 𝑡𝑘-is the target output, 𝑦𝑘- is the predicted value, 

and n - number of data samples.   

B. Bacterial colony optimization 

BCO is a new SI algorithm developed by Niu and Wang 
(2012) [25].   To ease the optimization process, the BCO 
algorithm, a new bacterial algorithm with SI behavior, was 
presented.  Many variants of BCO have been developed 
to solve various real-world applications [26-31].  The BCO 
is made up of five phases: chemotaxis and 
communication, elimination and reproduction, migration, 
and reproduction.  Chemotaxis and communication are 
employed during the complete process of BCO.  By 
learning about the population, the bacteria may fine-tune 
their swimming and tumbling routes, which is illustrated in 
[7] [25].  A unique chemotaxis and communication 
approach is used to update the bacterium positions.  
Chemotaxis in bacteria can be divided into two sorts 
throughout their lives: tumbling and swimming.  When 
tumbling, a stochastic direction contributes to the actual 
swimming process.   As can be seen here, while tumbling, 
the combined effects of the turbulence director and the 
optimal searching director change the direction of the 
search and update the positions of each bacterium which 
are determined in Eq. (7) [25],  

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 −

1)) + (1 − 𝑓𝑖) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1)) + 𝑡𝑢𝑟𝑏𝑖]                    

 

(7)  

To put it another way, there isn't a turbulence director 
during the swimming process to guide bacteria toward 
their ideal state, which is determined as Eq. (8) [25],  

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1) + 𝐶(𝑖) ∗ [𝑓𝑖 . (𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 −

1)) + (1 − 𝑓𝑖) ∗ (𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑇 − 1))]

                   

(8) 

  

𝐶(𝑖) = 𝐶𝑚𝑖𝑛 + (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥−𝐼𝑡𝑒𝑟𝑗

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
) 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛          (9) 

Where, 𝑡𝑢𝑟𝑏𝑖- turbulent direction variance value. 𝑓𝑖 ∈
{0,1}, 𝐶(𝑖) - chemotaxis step size value.𝑃𝑏𝑒𝑠𝑡- personal 

best and 𝐺𝑏𝑒𝑠𝑡- global best.  𝑛 - linearly reducing way of 

chemotaxis step.  𝑇 is the time step.  The values 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  
and 𝐼𝑡𝑒𝑟𝑗 represent the maximum number of iterations 

Algorithm 1: BCO algorithm 

Inputs: Population size  (𝑆), Chemotaxis step 
(𝑁𝑐), Reproduction (𝑁𝑟𝑒), Probability (𝑝𝑟𝑒), 
Maximum iteration ((𝑀𝑎𝑥_𝐼𝑡𝑒𝑟) and objective 

function 𝑓(𝑥) 

Outputs: best solutions (𝑋𝑏𝑒𝑠𝑡) 
Step 1: Initialize the required parameters 
Step 2: while (the maximum iteration is not met) do 
Step 3: Chemotaxis & communications  
Step 4: Elimination and reproduction  
Step 5: Migration  
Step 6 Position updating  
Step 7: End while  
Step 8: If the termination criteria are not satisfied then 

Go to Step 2.  Otherwise, stop the process  
Step 9: Store final position as best  

 

 

 
Fig.1. ERNN framework 
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w 
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and the current iteration, respectively.   𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 are 

the chemotaxis step size controls how far each bacterium 
moves during the optimization process, which is 
illustrated in Eq. (9) as shown in [25]. During the 
elimination and reproduction phase, the sick bacterium 
will be replaced by the high-energy bacterium, which will 
multiply to create the most recent people.  Given its 
tremendous energy, it is clear that the bacterium is quite 
effective at finding resources.  The bacteria can move 
within a certain range of search space during the 
migration phase when certain requirements are met.   
Bacteria can, of course, use probability during the 
migrating phase to search for the most recent nutrients.  
Algorithm 1 displays the step-by-step BCO process.  

C. Iterative Local Search (ILS) 

The iterative local search algorithm (ILS) is a 
straightforward and effective metaheuristic [13, 32]. 
Because this approach performs some perturbation and 
local research based on the local optima, it can 
successfully handle situations where intelligent 
optimization algorithms are prone to falling into the local 
optima. The ILS algorithm has produced positive local 
search results when paired with other intelligent 
optimization techniques in recent years.  Algorithm 2 
shows the step-by-step process of the ILS algorithm.  

D. Improved BCO (IBCO) 

By strengthening the local exploitation process, the ILS 
method significantly improves BCO's optimization 
capabilities. Through mechanisms including chemotaxis, 
reproduction, and elimination-dispersal, BCO is good at 
exploring the global search space; yet, because it is 
stochastic, it may have trouble pinpointing the global 
optimum. To overcome this limit, ILS improves the best 
solutions found within their areas through repeated local 
searches. Improved convergence speed and solution 
accuracy result from the system's ability to effectively 
exploit attractive regions of the search space during this 
iterative process.  In order to avoid any local optima, ILS 
first conducts a local search on the selected bacteria, or 
the best candidate solution found by BCO. This is 
followed by a perturbation phase that adjusts the solution 
only slightly. The enhanced result is then selected based 

on fitness evaluation after a second local search is 
directed on the perturbed solution. For a predetermined 
number of rounds, this process is repeated, enabling the 
hybrid BCO-ILS algorithm to successfully traverse 
intricate, multimodal environments. Overall, the addition 
of ILS transforms BCO from a largely exploratory 
optimizer into a more robust, balanced method that can 
more effectively solve high-dimensional, nonlinear 
optimization problems.  By improving the exploration and 
exploitation capabilities of BCO algorithms, ILS 
algorithms are essential to BCO algorithms.  To solve 
optimization problems, they frequently entail groups of 
agents interacting with one another and their 
surroundings.   Moreover, the local optima condition in 
which the bacteria settle too quickly on less-than-ideal 
solutions—may affect the BCO. By continuously 
improving the solutions, ILS helps to mitigate this problem 
by preventing premature convergence and facilitating 
more efficient bacteria exploration of the search space.  
ILS helps refine solutions and approach the global 
optimum.  Bacterial Colony Optimization (BCO) and 
Iterative Local Search (ILS integration) are based on a 
global-to-local strategy of optimization. First, BCO 
conducts a global exploration, by defining each bacterium 
as a candidate solution within the search space by 
updating it in response to chemotaxis, reproduction, and 
elimination dispersal. Following each BCO step, the most 
successful bacterial solutions are selected as the starting 
points for ILS. The LS algorithm will then proceed with a 
local search, which should closely focus on these 
solutions by more carefully applying small perturbations 
to neighborhoods until the solutions are optimized. In 
case a locally perturbed solution has a better fitness, it 
substitutes the current one. The developed solutions are 
recycled into the bacterial population, and they drive 
further global exploration. This collaboration enables 
BCO to prevent untimely convergence and ILS to improve 
finer exploitation. Consequently, the hybrid BCO-ILS 
system has higher convergence time, high-quality 
solutions, and high stability.  Algorithm 3 presents the 
step-by-step procedure for IBCO.   

E. Proposed IBCO-ERNN 

A progressive loss of bone density is the hallmark of 
osteoporosis. Time-series data, such as assessments 

Algorithm 2: ILS algorithm 

Inputs: Initial solutions (𝑋), Maximum iteration 
(𝑀𝑎𝑥_𝐼𝑡𝑒𝑟), and objective function 𝑓(. ) 

Outputs: best solutions (𝑋𝑏𝑒𝑠𝑡) 
Step 1: The greatest solution 𝑋∗ is perturbed to attain a 

transitional state 𝑋∗∗  the perturbation is 𝑋∗∗ =
𝑋∗ × 𝑟𝑎𝑛𝑑()                                

Step 2: Examine the intermediate state 𝑋∗∗ mentioned 

earlier again to determine the local optima 
solution 𝑋∗

′, or the local optima, 𝑓(𝑋∗
′) 

Step 3: Acceptance state  
If 𝑓(𝑋∗) < 𝑓(𝑋∗

′) then 

𝑋∗ = 𝑋∗
′ 

Elseif (exp (−𝑓(𝑋∗) − 𝑓(𝑋∗
′) > 𝑟𝑎𝑛𝑑()) 

𝑋∗ = 𝑋∗
′ 

 𝑓(𝑋∗) = 𝑓(𝑋∗
′) 

End if  
Step 4: Return the best solution 

 

 

Algorithm 3: IBCO algorithm 

Inputs: Population size  (𝑆), Chemotaxis step 
(𝑁𝑐), Reproduction (𝑁𝑟𝑒), Probability (𝑝𝑟𝑒), 
Maximum iteration (𝑀𝑎𝑥_𝐼𝑡𝑒𝑟), and objective 

function 𝑓(𝑥) 
Outputs: best solutions (𝑋𝑏𝑒𝑠𝑡) 
Step 1: Initialize the essential parameters 
Step 2: while (the maximum iteration is not met) do 
Step 3: Chemotaxis & communications  
Step 4: Elimination and reproduction  
Step 5: Migration  
Step 6 Position updating using ILS (Algorithm 2)  
Step 7: End while  
Step 8: If the termination criteria are not satisfied then 

Go to Step 2.  Otherwise, stop the process  
Step 8: Store final position as best  
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 of bone density, hormone levels, lifestyle factors, and 
genetic predispositions, are frequently found in patients' 
medical records. This sequential data can be analysed 
using Elman RNNs to find patterns and variations that 
point to the onset or progression of osteoporosis.  Elman 
RNNs can accurately describe the evolution of 
osteoporosis-related parameters over extended periods 
because they are well suited to capturing long-term 
dependencies in data. This may aid in the early detection 
and monitoring of the disease.  These diverse data 
modalities can be combined into a single representation 
using Elman RNNs, enabling thorough analysis and 
interpretation to improve illness identification.  However, 

the conventional ERNN employs the gradient descent 
method during the training process.  The optimal ML 
architecture and appropriate vector sample weighting are 
among the many model parameters sought using the SI 
technique. Fig.2 shows the overview of the proposed 
method.  Hence, ERNN has many drawbacks, including 
local minima, low accuracy, and a slow convergence rate. 
In this study, IBCO is suggested as a means of 
determining the optimal classification percentage, 
minimizing error, and optimizing the IBCO-ERNN 
hyperparameters of the ERNN, such as weights and bias.  
The IBCO algorithm is an algorithm that can directly work 
on the parameter space of the ERNN by encoding 

 

Fig.2. Proposed framework based on optimized ERNN 
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network weights, recurrent connections, and bias terms 
as solutions in a bacterium. At chemotaxis, replication, 
and elimination dispersal stages, the multidimensional 
ERNN search space is searched by each bacterium to 
reduce the classification error. The most successful 
bacterium gives the globally optimized parameters of the 
ERNN and leads to a faster convergence process, 
prevention of getting stuck on local minima, and high 
prediction accuracy.  The experiment begins with 
gathering and pre-processing the datasets using the 
suggested IBCO-ERNN.  In the proposed method, 
normalized data is fed into the optimized ERNN model. 
ERNN is trained and optimized with IBCO. 

     Every bacterium is a candidate ERNN solution in the 
form of weights and bias values. The joint exploration of 
the high-dimensional ERNN parameter space is done by 
the bacterial population. As part of chemotaxis, bacteria 
do tumble and perform swimming maneuvers, which 
adjust the parameters in ERNN. The fitness function of 
the ERNN is the classification error after every movement. 
Bacteria are drawn to parameter areas that produce 
reduced prediction error. During the reproduction phase, 
the process of duplication of the bacteria is carried out, 
and the weak ones are killed. This increases the 
optimization of potential ERNN settings. Randomness is 
created by an elimination-dispersal process to overcome 
local optima. Accordingly, BCO allows optimizing the 
ERNN parameters globally at a faster rate of convergence 
and precision. 

     The optimization of weights and biases in an ERNN 
using an IBCO algorithm significantly enhances the 
network's learning capability and generalization 
performance. Weights and biases are vital components in 
any neural network, as they regulate how input data is 
transformed and how the network learns patterns across 
time steps.  The IBCO improves the standard BCO 
algorithm by integrating ILS. Each bacterium in the IBCO 
population encodes a potential set of ERNN weights and 
biases. Through chemotaxis, reproduction, and 
elimination-dispersal, the algorithm explores the solution 

space, evaluating each bacterium based on the ERNN's 
predictive performance using the encoded parameters. 
The addition of ILS further refines promising solutions, 
helping the algorithm escape local optima and converge 
faster. This hybrid optimization process ensures that the 
ERNN achieves higher accuracy, faster convergence, 
and improved performance on complex medical data 
classification. 

Each bacterium is treated as a search agent that 
represents an initial candidate solution. During training, 
the position of every agent is updated by minimizing the 
objective function. Using the objective function and the 
initial parameter settings, IBCO searches for the optimal 
ERNN value. The resulting output vectors are then 
denormalized to recover the expected values. 
Experiments were carried out to confirm prediction 
consistency, demonstrating that the SI approach can 
generate near-optimal solutions. The optimized method 
uses the mean square error (MSE) for calculating its 
fitness values, which are defined as Eq. (10) as follows 
[10],  

𝑀𝑆𝐸 = ∑ (𝑡𝑘 − 𝑦𝑘)2𝑛
𝑘=1                      (10) 

where, 𝑡𝑘-target output, 𝑦𝑘- yk-predicted value, and 𝑛 - 

number of data samples. Algorithm 4 shows the IBCO-
ERNN method.   

 

IV. Experimental investigations  

Analysing experimental results in osteoporosis disease 
detection involves examining the performance of different 
detection models in identifying the presence or 
progression of osteoporosis using various datasets and 
evaluation metrics. The present study proposed a new 
optimized ERNN based on IBCO for detecting 
osteoporosis diseases.  To maximize detection accuracy, 
minimize error, and optimize ERNN weights and biases, 
the current work presented new SI-based optimization 
strategies called IBCO. The SI method is used to 
determine the optimal architecture, sample weighting, 
and biases for the vectors. The ERNN technique needs 
the connection weight and bias value set, which are 
generated by the IBCO algorithm utilizing a bacterium's 
position as a dimension. The network output error on the 
specified training sample and the number of connection 
weights with the bias value make up the fitness values.  
To compare the effectiveness of the suggested strategies, 
averages of the results are used. Based on their capacity 
for learning and generalization, they are compared.  The 
performance of the suggested IBCO-ERNN is compared 
with various benchmark prediction procedures such as 
BPNN [33], ERNN [34], GA-ERNN [35], PSO-ERNN [36], 
Adaptive PSO-ERNN (APSO-ERNN) [37], and BCO-
ERNN [38].   The performance of the suggested IBCO-
ERNN may be thoroughly and pertinently assessed 
thanks to the selection of ERNN-BCO, PSO-ERNN, GA-
ERNN, standard ERNN, and BPNN as benchmark 
models. These models encompass a range of 
optimization techniques and neural network designs 
frequently used in medical prediction problems. The study 
successfully illustrates the advancements made possible 
by the improved BCO technique by using both BPNN and 
other conventional models, as well as optimized recurrent 

Algorithm 4: Proposed optimized ERNN algorithm 

Inputs: Training set, ERNN architecture, Population 
size  (𝑆), Chemotaxis step (𝑁𝑐), Reproduction 
(𝑁𝑟𝑒), Probability (𝑝𝑟𝑒), Maximum iteration 
(𝑀𝑎𝑥_𝐼𝑡𝑒𝑟), and objective function 𝑓(𝑥) 

Outputs: optimized ERNN parameters  
Step 1: Initialize parameters  
Step 2: Normalize the data  
Step 3: Create training and test datasets from the data 
Step 4: While a small MSE value is not met   
Step 5: Train the ERNN  

Step 5.1: The ERNN are optimized by the IBCO 
(Algorithm 1) 

Step 5.2: Calculate the MSE value for each 
bacterium for terminating the process 

Step 5.3: The final position of IBCO is 
considered as an optimal parameter of 
ERNN  

Step 6: The trained model is evaluated using the test 
dataset that has the optimal weights and bias. 
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networks like PSO-ERNN and GA-ERNN. This tiered 
comparison shows the advantages of the suggested 
method in terms of prediction accuracy and model 
robustness, as well as its incremental value. Furthermore, 
the models' applicability to the field of medical diagnostics 
guarantees that the comparative study will always be 
significant and grounded in context.  The developed 
method uses MATLAB 2015b for obtaining comparison 
results on Windows 11 with an i5 processor and 16 GB 
RAM.  

A. Training process  

Patient data samples are collected and subsequently 
grouped. The classifier uses these groups to identify 
diseases. First, it is necessary to extract the pertinent 
characteristics that are used to classify samples as either 
diseased or normal. The proposed osteoporosis disease 
detection system uses the IBCO-ERNN model as its 
classifier. After receiving the groupings of samples, it 
classifies each sample within the groups as either 
diseased or not. Because it is a supervised model, it must 
be trained on labeled data before it can be used to 
diagnose osteoporosis.   

The classifier is trained using a training dataset. It is an 
assortment of labeled instances. The collected data 
samples  𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛}  and target label 𝑡 =
{𝑡1, 𝑡, . . . 𝑡𝑛} with a binary class 𝑝. There are now just two 

possible values for  𝑡: [−1,1] and [1, -1].  𝑡: [−1,1] 
represents the normal class while 𝑡: [1, −1] represents the 

attack class.  The training technique is used to find the 
optimal values for the connection weights and biases 
using IBCO, which is then used to generate the 

associated weights and biases.  Initially, a population of 
target vectors is initialized.   

B. Datasets  

The present research work focused on four datasets 
based on the Femoral neck, Lumbar spine, Femoral and 
Spine, and BMD datasets.  The first three datasets were 
gathered from the NGANES-III archive, which is open to 
the public [39].  The following datasets were used to test 
the forecast technique's performance: Femoral neck, 
Lumbar spine, and Femoral and Spine dataset.  Tables 1 
and 2 summarize the dataset’s details.  The total number 
of samples is 2400, which are collected from 13 different 
features, the first 12 of which are features and the last 13 
of which are class labels.  It has been demonstrated that 
BMD measurements from NHANES are of higher quality 
than those from other studies.  T-scores are used for 
categorizing input records using class labels.  T-scores 
are calculated using the following Eq.(11) as shown in [11] 
by comparing BMD values to those of gender-matched 
young normal persons. 

𝑇 − 𝑠𝑐𝑜𝑟𝑒 =
𝐵𝑀𝐷𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝐵𝑀𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑔𝑟𝑜𝑢𝑝

𝑆𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑔𝑟𝑜𝑢𝑝
           (11) 

The BMD values are utilized to calculate the T-score 
using the NHANES reference group data as a guide. 
These NHANES publications report the mean BMD and 
standard deviation for the reference group. T-scores are 
employed to make an osteoporosis diagnosis following 
the "Gold Standards" established by the WHO [40-42]. 
The "Bone Mineral Density" open-source dataset, 
published by He, Linfeng, was used in this study. It is 
available on Harvard Dataverse 
(https://data.harvard.edu/dataverse). There were 40 
variables and 1537 observations in the original dataset. 
"OP" is the goal variable for this dataset [43]. “Bone 
density and DXA T-scores for the lumbar 1–4 (L1-4), 
femoral neck (FN), and thoracolumbar (TL) bones made 
up six of the 39 remaining characteristics. The patient's 
hematological and biochemical profiles are made up of 
eleven characteristics. Uric acid (URIC), creatinine 
(CREA), calcium (Ca), phosphorus (P), magnesium (Mg), 
and blood urea nitrogen (BUN) were the renal profile 
indicators. The levels of aspartate aminotransferase 

Table 1.  Parameters setting for ERNN and BCO 

ERNN BCO 

Parameter Value Parameter Value 

Training 
method  

BCO 
Population  100 

Activation 
function  

Tansig 
𝑁𝐶 100 

Fitness 
function  

MSE 
𝑁𝑠  4 

Learning 
rate  

0.55 
𝑁𝑟𝑒 4 

No. of 
epochs 

1000 
𝑁𝑒𝑑   2 

Error rate 0.005 𝑃𝑒𝑑 0.25 

Weight 
range  

-0.5 and 
0.5 

𝐶𝑚𝑎𝑥 and 

𝐶𝑚𝑖𝑛 
0.01 and 

0.2 

Dropout 
value  

0.5 
  

 

Table 2.  Details about the dataset’s properties 

S.No 
Attributes 

name 
Attributes descriptions 

1.  Age Patient age 

2.  BMI  Body Mass Index  

3.  Ethnicity Patient ethnicity  

4.  Gender  Patient gender  

5.  Height  Height during standing  

6.  FN_BMD BMD of the femoral neck 

7.  FN_BMC BMC of the femoral neck 

8.  FN_A moral neck area 

9.  LMS_BMD BMD of total spin  

10.  LMS_BMC Total spine BMC  

11.  LMS_A Total spine area  

12.  Weight Body weight 

13.  Class  Disease (1) / non-disease (-
1) 

 
Table 3.  Attributes details for each dataset 

Datasets 
Input 

features 
Output features 

Femoral 
neck  

1-9 Features  

13 - Feature (Disease 
/ Non-disease) 

Lumber 
spine 

1-6 and 10-12 
features  

Femoral 
and spine  

1-12 Features  
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(AST) and alanine transaminase (ALT) comprised the 
liver panel. High-Density Lipoprotein Cholesterol (HDL-C) 
and Low-Density Lipoprotein Cholesterol (LDL-C)” were 
used to measure the lipid profile. Fasting Blood Sugar 
was denoted by FBG.  The administration of medications 
such as calcium, calcitriol, bisphosphonates, and 
calcitonin was based on four factors. Eleven 
characteristics included the presence of additional 
osteoporosis-related conditions in the patient. Information 
regarding the patient's drinking and smoking patterns was 
gathered through two features. Gender, age, height, 
weight, and BMI were the five factors.  

C. Data preprocessing  

There are no missing or redundant values in the Femoral 
neck, Lumber spine, and Femoral and spine datasets.  
The BMD dataset has some missing values.  The BMD 
datasets often include missing values (e.g., BMI, calcium 
level, age). They are processed through mean/median 
imputation or statistical estimation. The categories of 
osteoporosis (Normal, Osteopenia, Osteoporosis) are 
numericalized to be used in the classification models.  
After removing missing values attributes, there were now 
30 variables and 1492 samples in the dataset for taking 
into experiments.  The acquired datasets are normalized 
using the min-max approach [44].  The training set and 
the testing set are separated from the patient's dataset.  
60% of the input data is utilized to train the proposed 
classifier, while the remaining 40% is sent to the testing 
set.  The evaluation is carried out using the test results.  
Each dataset is divided into training and testing segments 
at random.  

D. Parameter’s settings  

The right parameters of machine learning approaches can 
greatly improve a solution's performance.  In the current 
study, a single-layer architecture comprising input, 
hidden, and output layers, with linear, log-sigmoid, and 
log-sigmoid transfer functions, was considered.  One 
hundred hidden neurons are allowed to be the maximum 

number of hidden neurons in the hidden layer.  However, 
when choosing a large number of neurons, the learning 
process may become overfitting, and when choosing a 
small number of neurons in the hidden layer, it may 
become underfitting.  Hence, the present study selects 
the optimal number of neurons in the hidden layer 
between 10 and 100.  The rate of learning is 0.5. 1000 
epochs are the maximum number of trials for each 
problem. Dropout in recurrent connections should be 
applied carefully, as it may damage the temporal 
dependencies the model captures; a value of 0.5 was 
selected.  Twenty trials are conducted on each dataset to 
validate these methods.   The chemotaxis step values and 
swim step determine the BCO convergence rate, which is 
denoted by 𝑁𝐶 and 𝑁𝑠 , spectively.  The 𝑁𝐶 is set as 100 

,and the swim step is selected as 𝑁𝑠 = 4.  The 

reproduction value is set as 𝑁𝑟𝑒 = 4.  The dispersal step 

value is set as 𝑁𝑒𝑑 = 2.  The step size, probability of 

elimination, and dispersal values are all significant 
features in defining the BCO’s performance.  Hence, 𝑃𝑒𝑑is 

set as 0.25.  The lowest and highest chemotaxis step size 
values are selected as 𝐶𝑚𝑖𝑛 = 0.01 and 𝐶𝑚𝑎𝑥 = 0.2 ,  

respectively.  The details are shown in Table 3.   

E. Performance analysers  

Performance evaluators are employed to measure the 
efficiency of the ML approach. Four distinct performance 
indicators, including accuracy, precision, recall, and f-
measures, were employed in this study to examine the 
effectiveness of prediction algorithms. In this study, a 
threshold of 0.5 is commonly used to distinguish between 
positive and negative classes.  The model's accuracy and 
clinical relevance for the early and trustworthy detection 
of osteoporosis are guaranteed by the selection of 
suitable evaluation measures and thresholds.  The 
comparison algorithms are examined using accuracy to 
measure the excellence of detection, which is defined as 
Eq. 12 [45],  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
∗ 100                       (12) 

Table 4.  Performance comparisons of IBCO-ERNN for femoral neck 

Algorithms Accuracy Precision  Recall F-Measure  

BPNN 71.20 67.51 66.22 75.12 

ERNN 79.62 74.19 75.27 78.26 

GA-ERNN 82.64 79.31 78.17 81.94 

PSO-ERNN 84.27 82.38 86.59 85.73 

APSO-ERNN 89.48 86.61 90.52 91.05 

BCO-ERNN 92.92 89.26 93.72 94.78 

IBCO-ERNN 95.61 91.48 95.07 96.02 

Table 5.  Performance comparisons of IBCO-ERNN for Lumbar spine 

Algorithms Accuracy Precision Recall F-Measure 

BPNN 68.74 74.58 68.79 76.72 

ERNN 75.47 78.46 75.62 79.59 

GA-ERNN 84.94 83.53 83.85 83.19 

PSO-ERNN 87.48 87.59 86.94 88.78 

APSO-ERNN 90.62 92.20 92.39 94.46 

BCO-ERNN 94.04 94.82 93.27 96.53 

IBCO-ERNN 96.26 97.37 95.82 97.84 
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The ratio of normal data detected to the total number of 
aberrant and normal individuals found is known as 
precision, which is defined as Eq. 13 [45], 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100

                                

(13) 

The recall is defined as the ratio of the number of normal 
patients that were identified to the total number of patients 
that were present in the dataset, which is determined as 
Eq. 14 [45], 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100

        

   
               

(14) 

The F-measure is the harmonic mean of the metrics for 
recall and precision, which is defined as Eq. 15 [45],   

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
∗ 100           (15)  

False negative (FN) refers to diseases that were predicted 
incorrectly, while false positive (FP) refers to incorrectly 
predicted normal. True positive (TP) indicates a disease 
that was accurately predicted, whereas true negative (TN) 
indicates a normal state.  

 

V. Discussions  

The objective of the current study is to identify 
osteoporosis disease using numerical datasets that have 
been divided into disease groups (osteoporosis and non-
osteoporosis) based on BMD values.  It has been shown 
possible to identify osteoporosis from scans of the femoral 
neck, spine, combined femoral neck and spine, and BMD 
using an optimized ERNN.  When osteoporosis-related 
medical data contain time-series elements, ERNNs can 
capture sequential and time-dependent patterns through 
their context layer, which stores hidden-layer outputs from 
the previous time step. By learning intricate nonlinear 
correlations between clinical factors, ERNNs can 
increase the accuracy of diagnoses. Hyperparameters 
have a significant impact on ERNN performance. IBCO 
reduces training error and improves generalization to 
unseen osteoporosis data by helping to fine-tune the 
ERNN to ideal configurations. Patients are classified as 
osteoporotic or non-osteoporotic using IBCO-ERNN. 

usually demonstrates gains in sensitivity, specificity, and 
accuracy when compared to benchmark techniques.  

The accuracy, precision, recall, and F-measure are 
applied to the prediction method for evaluating its 
performance.  The creation and assessment of the model 
heavily rely on the ideas of testing and training.  Making 
the ERNN capable of identifying patterns and correlations 
in sequential data is the main objective of training.  The 
network is presented with a series of input data and 
corresponding target outputs during the training phase. 
To reduce the discrepancy between its predictions and 
the actual targets, the model modifies its weights and 
biases. The trained Elman's capacity to generalize to new 
data is assessed during the testing phase. The objective 
is to evaluate the model's predictive performance on data 
that was not used in training.  In testing, fresh, unused 
input data sequences are fed into the ERNN. The model 
produces forecasts, which are then contrasted with the 
actual target outputs.  

Table 4 displays the training results of the femoral 
neck.  Table 5 shows the training performance 
comparisons of the compared prediction methods for a 
spin dataset.  Table 6 demonstrate femoral neck 
performance comparisons, with the IBCO-ERNN 
technique outperforming the compared prediction 
algorithms.  Similarly, Table 7 demonstrate BMD dataset 
performance comparisons, with the IBCO-ERNN 
technique outperforming compared prediction algorithms. 
According to the results, though trained with all datasets, 
optimized ERNN demonstrated good and enhanced 
classification accuracy.  From Table 4, the Use of IBCO-
ERNN for the classification of femoral neck datasets 
resulted in the greatest accuracy of 95.61, Precision of 
91.48, Recall of 95.07, and F-measure of 96.02.  From 
Table 5, the Use of IBCO -ERNN for the classification of 
femoral neck datasets resulted in the greatest accuracy 
of 96.26, Precision of 97.37, Recall of 95.82, and F-
measure of 97.84.  From Table 6, the use of IBCO -ERNN 
for the classification of femoral neck datasets resulted in 

Table 6. Performance comparison of IBCO-ERNN for femoral and spine 

Algorithms Accuracy Precision Recall F-Measure 

BPNN 67.89 70.63 67.06 70.83 

ERNN 73.52 81.06 75.56 77.03 

GA-ERNN 81.69 87.59 81.38 83.48 

PSO-ERNN 87.12 91.71 86.63 88.54 

APSO-ERNN 93.07 93.44 90.74 91.36 

BCO-ERNN 95.95 95.59 92.37 94.83 

IBCO-ERNN 97.54 98.04 95.19 96.54 

 

Table 7.  Performance comparison of IBCO-ERNN for BMD datasets 

Algorithms Accuracy Precision Recall F-Measure 

BPNN 79.36 72.37 75.24 73.77 

ERNN 85.73 83.94 79.64 81.73 

GA-ERNN 89.31 88.51 84.72 86.57 

PSO-ERNN 92.46 90.39 87.48 88.91 

APSO-ERNN 94.34 93.63 92.38 93.00 

BCO-ERNN 96.02 96.95 94.72 95.82 

IBCO-ERNN 98.63 98.36 97.93 98.14 
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the greatest classification accuracy of 97.54, Precision of 
98.04, Recall of 95.19 and F-measure of 96.54. From 
Table 7, the Use of IBCO-ERNN for the classification of 
femoral neck datasets resulted in the greatest 
classification accuracy of 98.63, Precision of 98.36, 
Recall of 97.93, and F-measure of 98.14.  Figs. 3, 4, 5, 
and 6 reveal the testing detection results for all related 
algorithms when applying four datasets based on 
performance indicators.  According to the testing results, 
though trained with all datasets, optimized ERNN 
demonstrated good and enhanced classification 
accuracy.  

In the context of ML algorithms, convergence analysis 
usually refers to examining how an algorithm behaves 
when it iteratively adjusts its parameters to minimize a 
specific objective/loss.  Understanding if the algorithm will 
reach a solution, how soon it will converge, and whether 
it will stick to a suboptimal solution or converge to the ideal 
one is all made possible by the convergence analysis.   
Convergence investigation of the BCO-ERNN is shown in 
Figs. 7,8,9 and 10 and it is compared to the APSO-ERNN 
and the PSO-ERNN.   The suggested BCO-ERNN 
algorithm is converged with minimal error, according to 
the convergence analysis.  For the examination of 
numerical results, seven other prediction algorithms have 
been compared with the suggested BCO-ERNN 
algorithm.  But to compare the convergence investigation 
and better understand the convergence curve, three 

present-day methods are taken into consideration Figs. 
7,8,9 and 10 show that for four datasets, BCO-ERNN 
provides considerably lower RMSE values towards 
convergence.  ERNN is well-suited for scaling to more 
intricate and high-dimensional medical datasets because 
of its modular design and the enhanced bacterial colony 
optimization (IBCO) algorithm's optimization capabilities. 
The IBCO-ERNN, for example, can efficiently manage 
higher data volumes without sacrificing performance if the 
model architecture is modified appropriately. This 
includes employing batch training, adding regularization 
techniques, and increasing the number of hidden 
neurons. This paradigm can also be used for other 
medical prediction problems where temporal patterns and 
nonlinear interactions are important, such as cancer 
prognosis, cardiovascular illness, or diabetes early 
detection. The study can establish IBCO-ERNN as a 
flexible and scalable solution within the broader field of 
medical data analytics by emphasizing its potential.  

The relevance and usefulness of the research would 
be greatly increased by discussing how the IBCO-ERNN 
approach could be extended to additional medical 
prediction scenarios or adapted for larger datasets. 
Through the examination of longitudinal data, improved 
ERNN can identify minute modifications in bone health 
that may occur before osteoporosis manifests. By 
facilitating early detection and intervention, fractures and 

 

 

Fig.3. Testing performance results for the femoral neck datasets 

 

Fig.4. Testing performance results for the lumbar spine dataset 

 

0
.9

9
5

5

0
.9

9
9

9

0
.9

9
9

9

0
.9

8
6

4

0
.9

8
9

6

0
.9

8
6

2

0
.9

9
5

6

0
.9

7
6

5

0
.9

6
6

6

0
.9

7
6

2

0
.9

8
6

4

0
.9

5
8

4

0
.9

5
9

8

0
.9

6
9

7

0
.9

6
4

9

0
.9

2
9

5

0
.9

4
9

8

0
.9

3
9

9

0
.9

5
8

8

0
.8

8
2

3

0
.9

3
6

5

0
.9

1
6

2

0
.9

4
9

7

0
.8

5
9

6

0
.8

9
5

6

0
.8

8
2

5

0
.9

2
8

7

0
.8

0
7

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy (%) Precision (%) Recall (%) F-Score (%)

P
e

rf
o

rm
a

n
c

e
  

v
a

lu
e

s
 (

%
)

IBCO-ERNN BCO-ERNN APSO-ERNN PSO-ERNN GA-ERNN ERNN BPNN

0
.9

9
4

4

0
.9

9
6

6

0
.9

8
9

9

0
.9

8
9

9

0
.9

8
6

4

0
.9

8
6

9

0
.9

8
6

6

0
.9

7
5

5

0
.9

7
6

4

0
.9

7
6

4

0
.9

7
6

4

0
.9

5
6

6

0
.9

5
6

7

0
.9

5
6

4

0
.9

5
1

8

0
.9

3
9

8

0
.9

3
6

4

0
.9

3
6

4

0
.9

3
8

4

0
.9

2
9

9

0
.9

1
2

6

0
.9

1
5

6

0
.8

9
6

2

0
.9

1
7

1

0
.8

8
1

5

0
.8

8
5

2

0
.8

5
6

6 0
.8

8
5

5

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

Accuracy (%) Precision (%) Recall (%) F-Score (%)

P
e

rf
o

rm
a

n
c

e
 V

a
lu

e
s

 (
%

)

IBCO-ERNN BCO-ERNN APSO-ERNN PSO-ERNN GA-ERNN ERNN BPNN

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1410
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 430-446                                                e-ISSN: 2656-8632 

 
Manuscript received 15 March 2025; Revised 10 December 2025; Accepted 20 January 2026; Available online 4 February 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1410 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).                            441               

other problems linked to advanced osteoporosis may be 
avoided.  

The goal of osteoporosis diagnosis was used to 
assess the efficacy of many neural network models and 
their optimization techniques. BPNN, ERNN, and their 
variants optimized with metaheuristic algorithms such as 
GA, PSO, APSO, BCO, and the proposed IBCO were 
among that group.  Being a conventional feedforward 
network, BPNN [33] is unable to simulate contextual 
linkages and temporal dependencies among sequential 
variables, which are frequently essential when examining 
medical data that changes over time, like bone mineral 
density. Its dependence on gradient descent also 
increases the likelihood of becoming stuck in local 
minima.  Although ERNN's [34] context memory and 
temporal modelling capabilities allow it to beat BPNN, it 
still has issues with parameter tweaking and convergence 
to local optima. GA-ERNN [35] expands the search space 
by incorporating evolutionary ideas into ERNN training. 
However, because of random crossover and mutation 
rates, GA's convergence is frequently slower and more 
unstable. Because PSO-ERNN [36] uses fewer 
hyperparameters and a social-based learning approach, 
it offers a significant improvement over GA-ERNN. It finds 
optimal solutions more likely and converges more quickly. 
However, typical PSO may still have a lack of variation 

and premature convergence in subsequent iterations. 
Better performance tweaking throughout the learning 
phase is made possible by PSO-ERNN, which adds 
adaptability to the PSO parameters. Although it 
outperforms IPSO-ERNN [37] in terms of avoiding local 
optima and improving generalization, its performance is 
still reliant on initial parameter values and does not draw 
inspiration from biology to generate natural variation.  
BCO-ERNN [38] does a good job at capturing ideal ERNN 
configurations because to its optimization influenced by 
bacteria. Its static search algorithms and defined step 
sizes, however, might make it less accurate and efficient.  
IBCO-ERNN continuously beats other models in terms of 
classification accuracy, convergence speed, and 
robustness for osteoporosis detection, according to the 
experimental comparison. Because it can adaptively 
explore and adjust the neural network parameters, it is 
especially well-suited for tasks involving medical 
diagnosis where accuracy and dependability are 
essential. IBCO-ERNN is therefore a clever and 
promising way to help doctors identify osteoporosis early 
and accurately. 

Generally, the variants that do solve these problems 
partially are metaheuristic-assisted variants like GA-
ERNN and PSO-ERNN, which add the global search 
ability. Nevertheless, GA-ERNN is affected by premature 

 

 

Fig.5. Testing performance results for the femoral neck and spine dataset 

 

 

Fig.6. Testing performance results for the BMD dataset 

 

0.75

0.8

0.85

0.9

0.95

1

IBCO-ERNN BCO-ERNN APSO-ERNN PSO-ERNN GA-ERNN ERNN BPNN

P
e

rf
o

rm
a

n
c
e

 V
a

lu
e

 (
%

)

Accuracy (%) Precision (%) Recall (%) F-Score (%)

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

Accuracy (%) Precision (%) Recall (%) F-Score (%)

P
e
rf

o
rm

a
n
c
e
 V

a
lu

e
s
 (

%
)

IBCO-ERNN BCO-ERNN APSO-ERNN PSO-ERNN GA-ERNN ERNN BPNN

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1410
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 430-446                                                e-ISSN: 2656-8632 

 
Manuscript received 15 March 2025; Revised 10 December 2025; Accepted 20 January 2026; Available online 4 February 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1410 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).                            442               

convergence and genetic drift, whereas PSO-ERNN is 
very sensitive to velocity control parameters, which tends 
to lead to oscillatory behaviour and unstable convergence 
when dealing with noisy medical features. Despite the 
increased flexibility of APSO-ERNN, it remains 
inadequate in exploiting fine-tuning of the various ERNN 
parameters to areas that are optimal. The BCO-ERNN 
model is highly effective at exploration in bacterial 
chemotaxis, but it exhibits low local refinement, which 
leads to stagnation near near-optimal solutions. 
Conversely, IBCO-ERNN combines the processes of ILS 
into the bacterial evolution process, which allows a 
diversified global search and an increased local 
exploitation. The hybrid method is especially efficient 
when predicting osteoporosis, in which a minor change in 
parameters can have a massive impact on sensitivity and 
false negatives. This makes IBCO-ERNN better at 
reducing false negatives, improving sensitivity, and 
generalizing, particularly for early-stage osteoporosis 
cases. The findings in these studies validate the 
hypothesis that the suggested IBCO-ERNN fits the 
complexity and clinical needs of osteoporosis BMD 
datasets, which explain its superior performance 
compared to current benchmark models. When used 
properly, the proposed method can produce osteoporosis 

prediction accuracy that is higher than that of 
conventional RNNs.  A reliable prediction method can 
help medical professionals identify high-risk patients 
early, enabling prompt treatment to reduce fractures and 
improve quality of life.  Also, it opens up new possibilities 
for reliable model training and adaptability by promoting 
the investigation of biologically inspired optimization 
algorithms in medical AI applications.  However, the IBCO 
involves several hyperparameters, and inappropriate 
tuning can degrade performance.  Hence, the 
performance of IBCO heavily depends on the careful 
selection of these parameters and population 
initializations.  Additionally, optimizing RNNs with IBCO 
can be computationally expensive due to the iterative 
nature and complexity of training [46].   

Despite the fact that the proposed model is accurate 
in prediction, it has clinical significance in enhancing the 
detection of risks at an earlier stage of osteoporosis. The 
practical use of such a system would be in the form of a 
pre-screening tool to put high-risk patients on the list of 
scanning with DXA and early interventions to focus the 
care on treating fractures rather than preventing them. 
Improved sensitivity will reduce missed diagnoses, 
thereby enabling prompt implementation of lifestyle 
changes and pharmacological treatment, both of which 

 

 

Fig.7. Convergence analysis for femoral neck 

 

 

Fig.8. Convergence analysis for lumber spine dataset 
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have been shown to reduce fracture risk. In healthcare, 
effective resource allocation is facilitated by accurate risk 
stratification, which helps avoid unnecessary imaging 
while ensuring that vulnerable patients receive necessary 
care in a timely manner. As a result, the performance 
metrics that have been reported correspond to the 
tangible clinical outcomes, such as the decreased number 
of fractures and the enhanced patient quality of life. 
Although the model of IBCO-ERNN has high predictive 
accuracy, the extent of its interpretability is a major 
limitation to its practical application in clinical settings. In 
clinical practices, decision-makers would need clear logic 
to know why a patient may be considered to be at high 
risk, especially in preventive diseases such as 
osteoporosis, where decisions on prolonged treatment 
may be concerned. Being a hybrid operation framework 
of deep learning and a metaheuristic framework, IBCO-
ERNN is a black-box model, which only gives little 
information regarding the contribution by features or the 
decision pathways. This unaccountability could diminish 
clinician confidence and hinder acceptance of it as a 
decision support tool in its own right, regardless of 
excellent performance scores. 

 

VI. Conclusions 

This research was to build an effective, solid, and 
practical approach to predict osteoporosis early in the 
development of advanced learning and optimization 
strategies. Recognizing that classical learning algorithms 
have limited accuracy, often fall into local minima, and 
converge slowly, this work presents an IBCO-ERNN. This 
was aimed at optimizing the weights and biases of the 
ERNN through the IBCO algorithm, which ILS augmented 
to allow optimal prediction and ensure that it is possible to 
identify individuals at risk of osteoporosis even before the 
development of the condition and its consequent 
manifestation of fractures. The proposed model was 
assessed by conducting numerous experiments on the 
four kinds of osteoporosis data sets, namely Femoral 
Neck, Lumbar Spine, Femoral and Spine, and BMD. In all 
the datasets, the IBCO-ERNN performed better than any 
other optimized models and baseline models did. The 
IBCO-ERNN achieved 97.01%, 96.31%, 95.50%, and 
97.14% accuracy, precision, recall, and F-measure, 
respectively, indicating effective classification 
performance and reliability across varied diagnostic 
cases. Although these findings are encouraging, the 
proposed method is not without limitations. Adding ILS to 
the BCO framework makes the problem more 
computationally complex, which can be problematic for 
large-scale online applications. Besides, the performance 
of the model relies extensively on the quality of high-
quality processed input data. Furthermore, the IBCO-
ERNN and most deep learning systems are not 
interpretable; therefore, its use in clinical practice may be 
limited. As a way of overcoming these drawbacks and 
expanding on the existing work, some future directions 
are put forward. Incorporating explainable AI (XAI) 
methods may enhance interpretability and clarity of 
predictive models. Creating lighter-weight versions of the 
IBCO-ERNN may make the latter a feasible solution that 
can be deployed in real-time mobile or embedded 

healthcare systems. Moreover, the inclusion of 
multimodal data like genetic data, medical images, and 
lifestyle data may amplify the model and make it diagnose 
more accurately. 
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