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Abstract Epilepsy carries a high risk of sudden death and increased premature mortality, highlighting the
importance of automatic seizure detection to support faster diagnosis and treatment. The opacity of
existing deep learning models limits their real-world application in diagnosing epileptic seizures,
underscoring the need for more transparent and explainable systems. Limited research studies are
available on Explainable Artificial Intelligence (XAl)-based epileptic seizure detection, and these studies
provide only a visual explanation for the model’s behaviour. Additionally, these studies lack validation of
the XAl outputs using quantitative measures. Thus, this research aims to develop an explainable epileptic
seizure detection model to address the limitations of existing black-box deep learning approaches. It
proposes a novel Hybrid Transformer-DenseNet121-XAl (HTD-MXAI) integrated model for detecting
epileptic seizures from EEG data. The proposed model leverages advanced deep learning architectures,
namely the Transformer and DenseNet121, for automatic feature extraction, while simultaneously
extracting handcrafted features from the time, frequency, and spatial domains. The XAl techniques, such
as Attention Weights, Saliency Maps, and SHapley Additive eXplanations (SHAP), are integrated with the
proposed model to provide multimodal explainability for the model’s decision-making process. The results
demonstrate that the proposed model outperforms state-of-the-art models for seizure detection. It achieves
an overall (aggregated across subjects) accuracy of 99.14%, Sensitivity of 98.49%, and Specificity of
99.68% when applied to the CHB-MIT dataset. The Faithfulness score of 40.94% and completeness score
of 1.00 indicate that the explanations provided by the XAl method for the model’s prediction are highly
reliable. In conclusion, the proposed model offers a promising solution to the constraints, including the
interpretability of black box models, limited multimodal explainability, and the validation of XAl techniques
in the context of epileptic seizure detection.

Keywords: Epileptic Seizure Detection; Multimodal Explainable Al; Transformer; DenseNet121; Transfer
Learning; SHAP

l. Introduction consuming and prone to error. The development of an

Epilepsy is a disorder of the nervous system that automated system ha_s emerged asa pot(_antial so_lution
affects both children and adults, marked by the o support clinicians in the early diagnosis of epilepsy
repeated and untriggered occurrence of seizures [1].  [9]- Detecting epileptic seizures offers valuable insights
Epileptic seizures result from sudden disruptions in the ~ for early diagnosis, influencing treatment decisions.
Electroencephalogram (EEG) brain signals, affecting ~ Recent approaches leverage Machine Learning (ML)
groups of brain cells and leading to involuntary ~ and Deep Learning (DL) models to address the
movements, sensory disturbances, mood changes, limitations c_>f existing EEG signal processing mgthods.
cognitive impairment, and potential loss of Deep_[earmng enhances the analy3|§ of EEG signals,
consciousness, posing significant risks to individuals benefiting research areas such as epilepsy, movement

[2]. The risks associated with epileptic seizures, such disorders, memory, depression, schizophrenia, and
as sudden unexpected death, injuries, sleep [6]. Owing to the vast volumes of data and the

unconsciousness, cognitive, and memory issues, are  Implementation of deep learning, opaque models have
maijor concerns [3]. EEG is vital for capturing brainwave ~ €ffectively addressed challenges in real-world, life-
signals and recording brain activity. It plays a significant  threatening scenarios [7].

role in diagnosing epilepsy by providing helpful Many researchers have applied Convolutional Neural
information regarding the changes in brain activity Networks (CNNs) [8-10] and CNN-based pre-trained
during seizures [4]. However, manually reviewing models with transfer learning [11-15] for detecting
these long-hour recordings to identify seizures is time- epileptic seizures. The transfer learning approach,
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which utilizes pre-trained models, reduces the training
time for complex deep learning models and enhances
their performance. CNNs can efficiently extract spatial
features but cannot model long-range dependencies in
sequential EEG time-series data [16]. To mitigate the
limitations of CNNs, many existing studies have
employed Recurrent Neural Networks (RNNs) [17] and
their variants, such as Long Short-Term Memory
(LSTM) [18] and Gated Recurrent Unit (GRU) [19], for
seizure detection. Although RNNs and their variants
like LSTM and GRU are effective at modeling
sequential input data, they struggle to capture long-
range dependencies due to issues such as vanishing
gradients and increased training time [20]. Advanced
deep learning models, such as the Transformer, have
been developed to address these limitations.
Transformers leverage self-attention mechanisms to
process sequential data in parallel, enabling them to
learn long-range relationships efficiently. With these
attention-based capabilities, the Transformer model
excels in sequence-related tasks, demonstrating
strong performance in analyzing EEG signals for
Epileptic Seizure Detection [21-23]. Additionally,
numerous researchers have employed hybrid models
that combine the strengths of various architectures to
enhance overall performance [2, 24-26].

Although many advanced deep learning models have
been applied in ongoing research on epileptic seizure
detection, their black-box nature of these models
hinders their adoption in the real world [27]. To
overcome this challenge, Explainable Artificial
Intelligence (XAl) has emerged as a pioneering
technology for interpreting the behavior of complex
deep learning models. This enables clinicians to trust
the model's decision-making process and promotes its
adoption in critical domains, such as healthcare [28].
Few research studies have utilized XAl for epileptic
seizure detection with deep learning models. These
studies lack user-understandable explanations for the
models’ behavior and standard evaluation metrics for
measuring the performance of XAl techniques. Recent
research on explainable epileptic seizure detection
spans a variety of deep learning approaches, yet key
challenges persist. Deep learning models that utilize
connectivity features, attention, CNNs, and Bi-LSTM
architectures [29], as well asattention-based CNNs for
spatial channel relevance [30] enhance performance
but offer limited interpretability and incur high
computational costs. Several studies integrate
visualization-based XAl methods, such as gradient
ascent and SHAP [31], SHAP-based hybrid CNN
models [32], LRP with Bi-LSTM [33], Grad-CAM and
attention visualization in CNNs and ViT models [34],
and SHAP-supported tree ensembles [35-37], to
highlight important features or channels. However,
explanations often remain qualitative, dataset-specific,

or weakly aligned with clinically meaningful ictal
patterns. Siamese CNNs with SHAP and LIME [38],
bagged-tree models with SHAP [39], and neonatal-
focused CNN-Graph Attention models with modified
Grad-CAM [40] further emphasize interpretability but
are constrained by dataset size, generalizability, and
real-time applicability. Additional work explores
explainable GNNs [41], interpretable SVM-based
pipelines using clinically relevant features and t-SNE
visualization [42], transfer-learning models with LRP
[43], and classical classifiers combined with LIME and
SHAP [44]; however, most are limited by qualitative
evaluation and restricted datasets. Overall, despite
these advances, significant gaps remain in achieving
deeper interpretability, comprehensive multimodal
explanations, and robust, quantitative evaluation
metrics for XAl techniques in seizure detection. A
comparative analysis of several state-of-the-art
Epileptic Seizure detection research based on
Explainable Al is given in Table 1.

A. Motivation and Problem Formulation

From the existing study on XAl-based Epileptic Seizure
Detection, it is determined that there are still several
research gaps that exist in the early diagnosis of
epileptic seizures.

1. Lack of Interpretability in Seizure Detection Models

Although many ML and DL methods have been used
for seizure detection, their decision processes remain
largely opaque, and only a limited number of studies
have applied XAl in this domain. To address this gap,
this study proposes an explainable model for epileptic
seizure detection.

gx) = f(x) (1)
aré;éginL (f(x),9(0) + 2(9) (2)

Eq. (1) [45] formulates an explainable surrogate model
g(x) that mimics f(x) faithfully, where x represents
input EEG features. As described in Eq. (2) [45], the
aim is to minimize the difference between the f(x),
which is a complex, deep-learning model and g(x)
which is a simple, explainable model. The loss function
L measures how different g(x) from f(x)and how
faithful the explanation is to the original model. G
represents a class of simple interpretable models and
N(g) represents a complexity penalty that tries to keep
g simple and interpretable.

2. Limited Multimodal Explainability in EEG-based Al
Systems

Understanding the epileptic behaviors and state
transitions from the visual explanation alone affects the
early diagnosis of Epilepsy. Hence, providing a
multimodal explanation to doctors and patients with the
hybrid feature extraction is essential to improve the
model's reliability and efficiency.
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Table 1. Comparative Analysis of Explainable-Al-based Studies on Epileptic Seizure Detection

XAl Technique

Performance Metrics for XAl

Year Approach Dataset Visualization Textua_l Qualitative Quantitative
Explanation
Correlation
. between Feature
2020 CNN, Bi- Feature
[29] LSTM CHB-MIT  Relevance x relevance and x
scientific
understanding
Correlation
2020 CNN with TUH Attention M between attention M
[30] Attention topography weights and EEG
channels
2021 REPO2  Gradient corrﬁ;?)%ueir:sc};nd
[31] CNN MSE Ascent and * spatial-temporal *
cohort, SHAP patial-temp
distribution
Helsinki User Feedback, User Study,
2[2312 OONN University  SHAP x Explanation trtest, Likert
Hospital Patterns Scale Ratings
e BiLSTM Bonn LRP x Visual Inspection x
ResNet18, .
2023 LeNet-5, '(Eﬁri‘eﬁg Grad-CAM,
VGG-11, : . Attention x Visual Inspection x
[34] o University
Vision Hospital) Layer
Transformer P
Ensemble- .
s Tl SEOm e . Fewe
CatBoost P
DT, kNN, LR, University
2023 NB, RF, of Be_|rut SHAP < Feature <
[36] XGBoost, and Medical Importance
SVM Centre
2024 Optimal Channel
LSTM CHB-MIT SHAP x Combination x
[37] Lo
Determination
. CHB-MIT, Spearman's
2[2523? S'(?Nmaense %\;N Siena, SHAP, LIME x x rank correlation
9 TUSZ coefficient
Bagged Tree-
2024 based Feature
[39] classifier Bonn SHAP * Importance *
(BTBC)
. o Inspecting the
2024 Multilayer Hglsmlg relevance of each
Perceptron University  Grad-CAM x : x
[40] . channel and time
(MLP) Hospital ;
window
Attention- . Edge
based Graph Attentpn . Importance,
2024 Mechanism, Interpretation of
Neural CHB-MIT x Feature
[41] GNN El and FI Scores
Network Exolainer Importance
(GNN) P Score
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Coefficient of

2024 SVM with New Interoretable Variation,
Gaussian Delhi, t-SNE x P Statistical
[42] features N
Kernel Bonn Significance
Testing
2024 VGG16 Bonn LRP M Interpretable M
[43] features
2024 SVM, KNN, CHB-MIT SHAP and M Interpljetatlon of M
[44] RF LIME feature importance
Hvbrid Attention Faithfulness-
2025 Trangformer_ weights, Feature 40.94%
Propo CHB-MIT Saliency v Importance Completeness
DenseNet121
sed -ANN Maps, 1.00
SHAP

We considered a surrogate-based XAl approach in
which the black-box model f (x) is locally approximated
using interpretable surrogate models.

argmin Zee{v,t,q}L (f(x)'ge(x)) +'Q(ge)) (3)

9v9t9q

Eq. (3) extends the surrogate-model optimization
framework introduced in [45] multiple surrogate
models. Eq. (3) formulates the multimodal explainable
model, providing multiple forms of explainability, such
as visual, textual, and quantitative, for a model's
prediction. x represents the input EEG features, f(x)
denotes a DL-based model predicting seizure or
normal class, g,, 9.9, represents visual, textual, and
quantitative explanations, respectively. ‘e’ iterates over
explanation forms.

3. Challenges in Validating XAl Techniques

Explainable Al is an emerging field of research. There
is no standardized approach to applying its evaluation
metrics, and existing studies lack quantitative validation
of the XAl techniques.

B. Key Contributions

To address these issues, we have designed and
developed a hybrid, multimodal explainable model for
the early and effective detection of epileptic seizures.
To improve clinical interpretability, a multimodal
explainability approach is employed, closely aligned
with the roles of the underlying model components and
the types of explanations they naturally support. In
particular, attention weights from the Transformer are
used to convey both visual and quantitative information
about the temporal relevance of raw EEG segments.
The attention weights are directly interpretable from the
model without needing external tools. Saliency maps
applied to the DenseNet121-based spectrogram
encoder visually emphasize time-frequency regions
that are most influential in seizure-related feature
learning, and SHAP is employed with the ANN
classifier to provide visual and textual explanations of
feature contributions based on additive attribution

principles. SHAP provides both global and local

explanations, quantifying the direction

(positive/negative) of each feature's impact. Together,

these techniques provide complementary perspectives

on model behavior, capturing temporal relevance,
spatial patterns, and the importance of descriptive
features. This enables a more comprehensive and
clinically meaningful interpretation of seizure
predictions than relying on a single explainability
method, such as LIME or Grad-CAM. We prefer SHAP
over LIME due to its additive attribution guarantees and
support for both local and aggregated explanations,
which are important for clinical reliability, and we adopt
saliency maps instead of Grad-CAM to obtain high-
resolution, input-level visualization of distributed
seizure-related time-frequency patterns in EEG
spectrograms. Thus, a unique combination of the

Hybrid deep learning model and XAl techniques has

great potential to enhance transparency and foster

clinicians' trust in using complex deep learning models
in clinical practice for early and effective diagnosis of
epileptic seizures.

The main contributions of this research work are as
follows:

1. The study explores intra-modal multimodality,
leveraging complementary representations derived
from a single modality, EEG. Distinct from inter-
modal multimodal approaches, which fuse
heterogeneous data sources (e.g., EEG with fMRI
or ECG), intra-modal multimodal learning combines
raw EEG and their time-frequency representations
(spectrograms) to jointly capture complementary
temporal and spectral seizure dynamics without
increasing sensing complexity.

2. The study utilizes a combination of automated and

handcrafted features to enhance the seizure
detection accuracy and model interpretability.

3. The proposed model employs two different deep

learning models: a Transformer to extract
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sequential, temporal, and global contextual
features, and DenseNet121 to extract Spatial,
Spectral, and local visual patterns, providing a rich
feature vector to discriminate between seizure and
normal signals.

By integrating different XAl techniques, such as
Attention weights, Saliency maps, and SHAP with
the proposed model, the study provides multimodal
explanations, such as visual, textual, and
quantitative, for the model’'s decision-making

This study is structured as follows: Section Il describes
the proposed methodology. Section Il presents the
results of the proposed model. Section IV interprets the
findings, compares the results with existing studies,
and discusses the limitations and related future work.
Finally, Section V concludes the research.

Il. Method
This research aims to design and develop a
multimodal, explainable deep neural network model to

process. enhance interpretability and facilitate early, efficient
diagnosis of epileptic seizures. It proposes a Hybrid
HTD-MXAI Multimodal Explainable Epileptic Seizure Detection
] Raw EEG 1
- 7Datai_
S Data
© | Augmentation
g. | Conactenated Data
o
o
o Data Preproc ing
S . |
g Praeprocgssed Data Praprocessed Data
% Normalize 1 Apply STFT to
g Dimensional EEG Generate
2 Data Spectrograms
= 1D- EEG Data D- images
|
N 3 +
Handecrafted D Transformer ‘ D DenseNet121 ‘
5 Feature Extraction 'L l
‘g (Time, Frequency .
£ and Spatial Feature Extraction Feature Extraction
L Domain) (Temporal, (Spatial, Spectral)
@ Sequential)
“% Feature Vectot| Feature Vector | Feature Wector
Li.j v
Feature Fusion
Fused Fgature Vector
s v
g | ]% _— %j
2 ANN <
= T—-, Normal
Q »
= Integrate XAl
B=l
g module
- s I
> ention .
= SHAP rnn Saliency Maps
= 0
g ' _ v ) , ! )
% | Wisual/Textaual Visual/Quantitative | Visual
= L Explanation Explanation | Explanation
Fig.1. Proposed HTD-MXAI Epileptic Seizure Detection Model

Manuscript Received 03 December 2025; Revised 25 January 2026; Accepted 03 February 2026; Available online 07 February 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1380
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

451



https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1380
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 447-472

e-ISSN: 2656-8632

Transformer-DenseNet121-XAl (HTD-MXALI)
integrated model for seizure detection using EEG data.
The model uses intra-modal multi-modality input by
combining 1-dimensional raw EEG time-series signals
and 2-dimensional time-frequency images, along with
handcrafted features extracted from the time,
frequency, and spatial domains. In this work, a
transformer model is applied to raw EEG data, whereas
DenseNet121 is applied to spectrograms of EEG
signals obtained via the Short-Time Fourier Transform
(STFT). DenseNet121 learns local deep features from
the time-frequency representations, whereas the
transformer captures long-range temporal
dependencies that CNNs typically struggle with due to
their convolutional structure. These automatically
learned features, together with handcrafted features,
are fused and classified using an ANN. To address the
limitations of prior work that focuses primarily on visual
explanations, the proposed model delivers multimodal
interpretability, visual, quantitative, and textual,
providing deeper insight into model behavior and
enhancing clinical transparency and trust. The design
of the proposed HTD-MXAI consists of several steps,
such as Data Preparation, Feature Extraction, Seizure
classification, and integration of the XAl Module, as
shown in Fig.1.

A. Dataset

The research uses the CHB-MIT scalp EEG dataset,
available publicly via PhysioNet [46]. The dataset
consists of recordings from 23 patients aged 1.5 to 22
years, grouped into 24 cases. The data are sampled at
256Hz, collected from 23 channels, and obtained from
the Children’s Hospital Boston, with each patient's
seizure and non-seizure files. The continuous
monitoring of brain activity across multiple days and
varying conditions for each patient enhances the
dataset’s utility for developing robust and generalizable
epileptic seizure detection models. The high sampling
rate of 256 Hz preserves the temporal resolution
necessary for accurate analysis of epileptic EEG
patterns. Furthermore, the extensive scale of the
dataset, comprising approximately 686 EEG
recordings, enables the development and training of
deep learning models tailored to epileptic seizure
detection.

B. Data Preparation
1. Data Augmentation

Although brain signal data is recorded over long
durations, seizure recordings are only available for very
short periods, lasting for a minute or even seconds,
compared to non-seizure recordings. To address class
imbalance between seizure and normal classes, the
proposed model employs a Generative Adversarial
Network (GAN) architecture. GAN generates synthetic
seizure samples by adding random noise. The GAN

Algorithm 1 Pseudocode for GAN Training for
Generating Synthetic EEG Data

Input Real EEG Seizure Samples X

Output: Trained Generator Gg

(1 Initialize Generator G, and Discriminator
Dy

(2) Set hyperparameters for the Adam
Optimizer, Ir=0.0002, and g; = 0.5

(3) for epoch=1to ndo

4) Sample minibatch x from X

(5) Sample latent noise z ~ N (0,1)

(6) Generate synthetic samples x = Gy (2)

/[Train Discriminator//
(7) Compute L, using Eq. (5)
(8) Update Discriminator parameters ¢
/[Train Generator//

9) Sample new noise z ~ N (0,1)

(10) Compute L using Eq. (4)

(1) Update Generator parameters 6

(12) endfor

(13) Return Trained Generator Gg

comprises a Generator Gg, and a Discriminator D .
Both were implemented as fully connected neural
networks operating on EEG-derived feature vectors.
The Generator learns a mapping Gg: R? - R® , where
z ~ N (0,1) denotes a latent noise vector and d is the
dimensionality of the EEG feature space, producing
synthetic samples, £ = G4 (2). The discriminator learns
a mapping D¢:]Rd - [0,1], outputting the probability
that a given input sample is real. Architecturally, the
generator consists of three hidden layers with RelLU
activation followed by a Tanh-activated output layer,
while the discriminator employs multiple RelU-
activated hidden layers and a sigmoid output neuron.
The networks are trained adversarially using the
Generator and Discriminator loss functions as defined
in Eq. (4) [47] and Eq. (5) [47].

The loss function of a Generator (G) is described as
follows.

Lg = —= % log (D(G(s))) 4)

Where n denotes the number of samples (batch size),
s; denotes random noise input to Generator G, G(s;)
denotes a synthetically generated sample.

The loss function of a Discriminator D is defined as
follows.

Lp = =¥, (log D(x;) +log (1-D(G(s)))  (5)
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Independent Component
Analysis (ICA)

Fig.2. Data Preparation

Where, x; represents a real EEG seizure sample from
the dataset, D (x;) represents the output of the
discriminator, i.e., probability of realness, D(G(s;))
represents the discriminator’s output for the generated
sample. The Adam optimizer is applied to perform the
optimization with a learning rate of 0.0002 and 3, = 0.5,
over 500 epochs with a batch size of 4. Algorithm 1
describes the pseudocode of the GAN training loop. It
details the data augmentation process employed by the
proposed model, which uses a GAN. The pseudocode
outlines the functionality of the Generator and
Discriminator in detail.

2. Data Preprocessing

Preprocessing techniques, such as Independent
Component Analysis (ICA) and Bandpass Filtering, are
applied to remove artifacts and noise from raw EEG
data. The pre-processed data are then segmented into
10-second lengths to divide the continuous, long
signals into smaller time windows. Also, the 20%
overlap is used to maintain temporal continuity. Z-score
normalization is used to center EEG signals at zero and
scale their variance to 1. It helps the model to prevent
feature dominance and learn effectively. Furthermore,
this one-dimensional, pre-processed, and segmented
data is fed as input to the transformer.

3. Short-Time Fourier Transform (STFT)

To prepare the input for CNN-based pre-trained
models, the Short-Time Fourier Transform (STFT) is
applied to the pre-processed data, converting the time-
domain signal into the frequency domain. It generates
2-dimensional time-frequency images from the raw
EEG signal, called Spectrograms. These 2D
spectrograms are fed as input to the Pretrained model,
DenseNet121. The STFT is mathematically defined in

Eq. (6) [11], where x(t) represents the EEG signal as a
function of time ‘t’, m represents the time shift of the
window, w(t—m) represents a window function
centered at time m, e /2™! represents a complex
exponential denoting a sinusoidal wave at frequency f'.

STFT{x(t)}(m, ) = [ x(t) w(t — m)e /3™ tdt  (6)
In this study, a Hann window of length 256 samples (1
s at a sampling frequency of 256 Hz) with 50% overlap
(128 samples) is used to compute the STFT. Fig. 2
describes the detailed process of data preparation
shown above.

C. Automated Feature Extraction

The study employs two different deep learning
architectures for automatically extracting features from
EEG data: the Transformer model and DenseNet121,
applied to different input forms of EEG data.

1. Transformer

The proposed framework adopts a Transformer-based
encoder to analyze one-dimensional, pre-processed
EEG signals, enabling the model to capture their
underlying temporal and sequential dynamics. The
architecture is composed of several stacked encoder
blocks, each incorporating multi-head self-attention, a
position-wise feed-forward network, residual pathways,
and layer normalization. A Global Average Pooling
(GAP) layer is applied at the final stage to aggregate
the learned representations. Let X € rR™¢ denote a
pre-processed one-dimensional EEG segment, where
T represents the length of the segment and C denotes
the number of EEG channels. The input sequence is
first linearly projected into a higher-dimensional
embedding space of dimension d,,,q4e before being fed
into the Transformer encoder. Since the Transformer
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architecture does not inherently encode temporal
order, a positional encoding is added to the input
embeddings to preserve sequential information. The
positional encoding matrix P € R7*%mocel js defined as in
Eq. (7) [48]:

. t
Pt.2i) = sin (100002i/dmode|> ’

P(t.2i + 1) = cos — ) (7)
10000%model

The final input to the Transformer encoder is computed
as in Eq. (8) [48]:

Z=XW,+P (8)
where W, € R¢dmodel js  the learnable embedding
matrix.

Each Transformer encoder block consists of a multi-
head self-attention mechanism. Attention is computed
through scaled dot-product operations using three
projected vector sets-Query (Q), Key (K), and Value
(V), and also the model learns three distinct weight
matrices: the Query Weights (W?), the Key Weights
(WX) and the Value Weights (W) which are used to
compute attention scores and contextual
representations. For each attention head i € {1, ..., h},
the input sequence Z is linearly projected into Query,
Key, and Value representations as described in Eq. (9)
[48].

Q=2zWS K =zWk V=X, W 9)
The attention weights are computed by measuring the
similarity between the query and key vectors. The
attention output for head ‘i’ is formulated as in Eq. (10)
[48], where d;, denotes the dimension of the key
vectors

head; = Softmax (

Vi (10)

Qik]
Vi
The attention weights from multiple heads are
concatenated using Eq. (11) [48], and the final
projection matrix, W° is applied.

MHAttn(X) = Concatlhead,, ..., head,]. W° (11)

where WO € RémodeiXdmodelis  the output projection
matrix.

The attention output is passed through a position-wise
feed-forward network (FFN), applied independently to
each time step as described in Eq. (12) [48]:

FFN (x) = max (0, xW; + by)W, + b, (12)
Where W, € Rimode*drr |, € Reff*dmodel  and
by, b, are learnable bias parameters. Residual
connections and layer normalization are applied after
both the attention and feed-forward sublayers to
stabilize the training process. Each block processes the
input sequence and extracts the high-level sequential,
temporal, and brainwave frequency band-related
features. These features are then refined using a
Global Average Pooling operation applied along the

temporal dimension. The feature vector is extracted
from this layer and utilized for further processing. The
final output of the stacked Transformer encoder layers
is denoted as H € R"*¢model

Ftemporal,Global =% ?:1Ht (13)
Eq. (13) represents the standard temporal global
average pooling operation used to aggregate
sequence-level representations in transformer-based
models [48]. In this work, a fixed-length feature vector
of 2560 dimensions is produced for each EEG
segment.
2. DenseNet121

The DenseNet121 processes 2D spectrograms using
convolutional layers, extracting deep, hierarchical,
spatial features and frequency-dependent patterns. In
the modified architecture, the final classification layer
of DenseNet121 is replaced with a convolution layer,
Global Average Pooling (GAP), and a Fully Connected
(Dense) layer. Let the input provided to the
DenseNet121 be defined as X € R?24%224%3 Eq. (14)
[49] formulates the output feature map at [*" layer. The
I*" layer receives the output feature maps from all
preceding layers, where, [xg,x,...,X;_1] denotes the
concatenation of all output feature maps from
preceding layers. T, represents a non-linear
transformation at the layer, [ comprising batch
normalization, RELU activation function, and
convolution operations.
xp = T ([x0, X1, s X1-1]) (14).
The DenseNet121 outputs a feature embedding, a
high-dimensional vector, defined as follows in Eq. (15)
[49].
FDenseNet € R7X7X1024 (15)
After that, the convolutional layer Conv2D with kernel
K is applied t0 Fpensene: » @S described in Eq. (16). It
refines the extracted features by capturing additional
spatial patterns further and reducing feature map
dimensions from (7,7,1024) to (5,5,128), following the
standard convolution activation formulation used in
DenseNet-based architectures [49].
Feonv = RELU (Fpensenet * K + D) (16)
GAP has been widely adopted in CNNs to convert
feature maps into compact vectors [50]. The feature
vector is refined through Global Average Pooling
(GAP), converting the (5,5,128) feature map into a 128-
dimensional feature vector by averaging across the
spatial dimensions, as defined in Eq. (17) [50].
Fap € R'?® (17)
A compact, high-dimensional feature vector (f) is
extracted through that layer and transferred for further
processing as described in Eq. (18) [49].

f = Fpensenet (x) € R4 (18)

Manuscript Received 03 December 2025; Revised 25 January 2026; Accepted 03 February 2026; Available online 07 February 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1380

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

454


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1380
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 447-472

e-ISSN: 2656-8632

Eq. (19) describes the automated extraction of spatial,
spectral, and local features using DenseNet121 and
spectrograms. A total of 128 features were extracted
per segment using the DenseNet121 model.

Fspatial—spectral,local = DenseNet(xspectrogram) (1 9)

In this work, DenseNet121 is employed with a transfer-
learning strategy. The network is initialized with
ImageNet pre-trained weights, and the convolutional
backbone layers are frozen during training to preserve
generic spatial feature representations. Only the newly
added convolutional, Global Average Pooling, and fully
connected layers are fine-tuned on EEG spectrogram
data as implemented in our experimental setup. This
design choice improves generalization, reduces
overfitting on limited seizure samples, and ensures
compatibility with the input spectrogram dimensions
224 x 224 x 3.

D. Handcrafted Feature Extraction

The study simultaneously extracts manual features
from EEG data in both the time and frequency domains
and computes spatial features.

1. Time Domain (Temporal) and Statistical Features

The time-domain features quantify the signals’ shapes,
variability, and temporal distributions. The following
temporal and statistical features are extracted from the
EEG data: Mean, Standard Deviation (SD), Skewness,
Kurtosis, Permutation Entropy (PE), Variance, Zero
Crossing Rate (ZCR), and Root Mean Square (RMS).

2. Frequency Domain (Spectral) Features

Frequency-domain features, such as Band Power,
Spectral Entropy, and Power Spectral Density (PSD)
for the Delta, Theta, Alpha, Beta, and Gamma
frequency bands, are computed and extracted. For a
pre-processed EEG segment x(t), the Power Spectral
Density (PSD), P(f)is estimated using Welch’s
method. The band power for a frequency band [f;, f3] is
computed as in Eq. (20) [51].

Poana = [}, p(f) df (20)

The mean Spectral Amplitude is computed as in Eq.
(21) [51].

:uamp = %ZRZD/P(]CR) (21)

Where N denotes the number of frequency bins. The
Spectral Entropy quantifies the complexity or disorder
of the EEG signal’s frequency content. It is derived by
normalizing the PSD and applying Shannon entropy as
described in Eq. (22) [51].

oo Lt PUO 10g2 PR (22)
These features facilitate analysis of the frequency
distributions of both seizure and non-seizure EEG
signals. Specifically, analyzing waveform-based
spectral features enables detection of variations in

HSpec =

brain activity using amplitude and frequency. Spectral
features in the frequency domain serve as a powerful
representation, capturing key differences in the brain's
functional and behavioural characteristics.

3. Spatial Features

Cross-correlation: This metric quantifies the similarity
between two EEG signals from different channels. It
computes the correlation for each pair and stores the
mean cross-correlation for that pair. The final output is
the average cross-correlation for each segment across
all pairs of channels.

Coherence: For each pair of channels, it calculates the
cross-spectral density by multiplying the FFT of the first
channel with the Fast Fourier Transform (FFT) of the
other channel, using the conjugate of the first channel’'s
FFT. Finally, it computes coherence by normalizing the
cross-spectral density by the product of the two
channels' PSDs.

Eq. (23) formulates the handcrafted feature extraction.
It extracts 243 handcrafted features per segment.

FHandcrafted = EXtraCt(xHandcrafted ) (23)
E. Feature Fusion

The handcrafted and automated features extracted
from the Transformer and DenseNet121 models are
fused as described in Eq. (24), yielding a combined
feature vector of size (None, 2931).

Ffused =

Ftemporal,Global ” Fspatial—spectral,local ” FHandcrafted (24)
The details are as follows. The automated features
through Transformer (1 to 2560), DenseNet121(2561
to 2668), and Handcrafted features (Frequency (Delta:
2689 to 2691, Theta: 2692 to 2694, Alpha: 2695 to
2697, Beta: 2698 to 2700, Gamma: 2701 to 2703),
Spatial (Correlation: (2704 to 2725) Coherence: (2726
to 2747), Time (Mean: 2748 to 2770, SD:2771 to 2793,
Skewness: 2794 to 2816, Kurtosis: 2817 to 2839, PM:
2840 to 2862, Variance: 2863 to 2885, ZCR:2886 to
2908, RMS: 2909 to 2931)

F. Classification

The resulting fused feature representation Fgeq €
R2%31 is provided as input to a fully connected Artificial
Neural Network (ANN) for final classification. The ANN
consists of three hidden layers with 128, 64, and 32
neurons, respectively, each employing the RelLU
activation function, followed by dropout regularization
to mitigate overfitting. The output layer contains a
single neuron with sigmoid activation to perform binary
classification (seizure vs. normal). The forward
propagation of the ANN is defined in Eq. (25) [52].

hy = ReLU (W; Fyyseq + b1 ), hy, = ReLU (W,h, + b)),

h; = ReLU (W3h, + b3), ¥ = 0 (Wyhs + by) (25)
where W;and b; denote the trainable weights and
biases of the i**layer, and o(-)represents the sigmoid
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activation function. The network is optimized using the
Adam optimizer by minimizing the binary cross-entropy
loss function as described in Eq. (26) [52].

L=—[ylog(y)+(1-y)log(1-3)] (26)
where y € {0,1}denotes the ground-truth class label

proposed model produces structured textual
explanations by analyzing Transformer attention
weights. The attention scores are aggregated and
mapped to predefined EEG frequency bands (delta,
theta, alpha, beta, and gamma), and the relative
contributions of these bands are expressed as

Transformer

Input Embedding!
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Fig.3. Architecture of Hybrid Transformer-DenseNet121-ANN Seizure Detection Model
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F
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and j is the predicted probability of seizure occurrence.

The detailed architecture of the proposed model,
comprising its core components, is shown in Fig. 3.

G. Multimodal Explainable Al module

The proposed model integrates various XAl
techniques, such as Attention Weights, Saliency Maps,
and SHAP values, with the Hybrid Transformer-
DenseNet121-ANN model to interpret the model's
decision-making process. The visual explanation is
presented using heatmaps of attention weights
computed by the Transformer's self-attention
mechanism and saliency maps for DenseNet-121,
highlighting the input regions critical for seizure
detection. The quantitative explanation is incorporated
using attention weights for important features. The

percentages. It reports the dominant frequency band
affecting model predictions in a compact, rule-based
textual format, thereby providing a human-readable,
interpretable explanation in the frequency domain
without using post hoc language generation.

SHAP assigns an importance value to each feature
based on its contribution to the model's output,
grounded in cooperative game theory. The SHAP value
¢, for the i" feature is computed using the Shapley
value formulation, as described in Eq. (27) [53].

ISI(IF1=1S|-1)!

b=y S U i) - ) (@)

where F denotes the set of all features, S is a subset of
features excluding the feature i, and f(:) represents
the trained model’s prediction function. This formulation
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ensures properties such as local accuracy,
consistency, and missingness. Eq. (28) describes the
multimodal explainable model that utilizes the above
XAl techniques to explain the prediction made by the
classifier for the input signal.

y = MXAI(AttentionWeight, Saliency, SHAP) (28)

We evaluated the faithfulness of the generated
explanations using an accuracy-drop perturbation test
on the features. Faithfulness determines how well the
explanation aligns with the model’s prediction. The
attribution values are computed for the features, and
the features are then ranked based on the attribution
scores generated by the XAl technique. The top 40%
of features by attribution were removed, and the
modified feature vectors were then passed through the
trained model to determine how their removal affects
the model's predictive performance. In this work, we
define the faithfulness score as the reduction in model
accuracy after removing the most important features,
as shown in Eq. (29), as follows [54].

Faithfulness = Original Accuracy —
Perturbed Accuracy (29)

A high score indicates that removing highly attributed
features causes greater performance degradation. This
indicates that the explanation is more representative of
the model's true decision-making behavior. This
method is consistent with perturbation-based
faithfulness evaluation in the explainable Al literature
[54], where performance drops have been used as an
indicator of how well aligned explanations are with
model reliance.

Algorithm 2. Pseudocode for Proposed HTD-
MXAI Model for Epileptic Seizure Detection
Input : Raw EEG Signals

Output: Seizure and Normal signals, Visual,
Quantitative, and Textual Explanation

/IData Augmentation//

(1) Acquire EEG recordings

(2) Separate seizure and non-seizure
recordings

(3) Apply GAN to generate synthetic seizure
samples using Eq. (4) and Eq. (5)

(4) Concatenate the synthetically generated

data with the original EEG data
[[Preprocessing//

(5) for concatenated input EEG data in step
4 do
(6) Apply Independent Component
Analysis (ICA)
(7) Apply a Bandpass filter
(8) Apply Segmentation and overlapping

(25)

(26)
(27)
(28)

(29)

(30)
(31)

(32)

Apply normalization using S’ = 5%

Apply Short-Time Fourier Transform
(STFT) using Eq. (6)
/[Transfer Learning//
Load the pretrained DenseNet121 model
Train the model on concatenated EEG

data
[IAutomated Feature Extraction//

for the preprocessed EEG segment in
step 9 do
Apply the proposed Transformer
model
Reduce feature dimensions using
Global Average Pooling (GAP)
Store the feature vector
endfor
for 2D spectrograms in step 10 do
Apply the DenseNet121 model
Reduce feature dimensions using
Global Average Pooling (GAP)
Store the feature vector
endfor
//Handcrafted Feature Extraction//
for the normalized EEG segment in step
9do
Compute time-domain features,

1¢N
Mean u ZNZL':lSi’

SD o = /% ?]:1(51‘ —u)?

Skewness Sk = Ni 2?21(%)3,

Kurtosis K = %ZL(%)“ ,

PE, Variance, ZCR, and RMS

Compute frequency-domain features

using Eq. (20) to Eq. (22)

Compute Spatial features

Store a handcrafted feature vector
endfor

/IFeature Fusion//
Fuse the handcrafted features and the
automated features extracted through
the Transformer and DenseNet121 in
steps 16,21, and 27
[ISeizure Detection//

Input the fused features to a feed-
forward Artificial Neural Network (ANN)
Apply a feed-forward Artificial Neural
Network (ANN) on test samples
Classify seizure and normal EEG
segments

Manuscript Received 03 December 2025; Revised 25 January 2026; Accepted 03 February 2026; Available online 07 February 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1380

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

457


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1380
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 447-472

e-ISSN: 2656-8632

/lintegrating Multimodal XAl //
//Attention Weights//

(33) for all transformer encoder blocks
(34) for all heads do
(35) Extract Attention Weights from
the attention layers

(36) endfor

Plot attention maps to visualize the
(37) . ;

time points

(38) endfor
/[Saliency Maps //

(39) Apply Saliency Maps to compute
gradients of DlenseNet121 and plot a

heatmap
IISHAP /I
(40) for each input feature in step 29
(41) Apply SHAP
(42) Visualize feature importance using

SHAP summary plots and bar plots
(43) endfor
/[Textual Explanation//

(44) Generate a textual explanation based
on the prediction outcome by the model

(45) endfor

Another measure used to evaluate the performance
of XAl techniques is the completeness score. It
measures whether the sum of all feature attributions
approximates the model output. SHAP satisfies the

completeness (local accuracy) axiom, where the
prediction for an input can be expressed as a sum of
the output for a baseline instance and feature
attributions, as shown in Eq. (30) [55]. ¢; denotes
SHAP attribution of feature ‘i’.

f(x) = f(Xpasetine) + Z?:l (ol (30)
Since the original definition of SHAP does not yield a
scalar value for completeness fidelity, we defined a
Completeness Score using Eq. (31) on the basis of the
completeness axiom, referring to Eq. (30), on how well
the SHAP attributions reconstruct the model output. A

Table 2. Implementation Parameters of the
Proposed Model

Parameters Transformer DenseNet121 ANN
Number of
Transformer 2 N/A N/A
Encoders
Number of
attention 3 N/A N/A
heads
Dropout
Rate 0.2 0.2 0.3
Learning 0.001 0.001 0.001
Rate
Binary . _ Binary
Entropy Entropy
Batch Size 32 32 32

score of 1 indicates perfect fidelity, while lower values
indicate deviation.

Completeness =1 — | f(x) — (f (Xpasetine) + Z?:l on]
(31)

The pseudocode of the proposed model is presented in
Algorithm 2. It describes the workflow and step-by-step
procedure of the proposed model. It is included to
improve the understanding, clarity, and reproducibility
of the proposed work, thus allowing the researchers to
implement and validate the proposed work.

H. Experimental Settings and Performance Metrics

The proposed model is evaluated using data from 21
patients in the CHB-MIT dataset, comprising 160
seizures. Cases 12 and 13 have recurrent variations in
channel configuration, whereas case 24 has insufficient
seizure data during the EEG recordings. Thus, these
cases were excluded during the experimentation. The
dataset is divided into 60% for training, 20% for
validation, and 20% for testing. In addition, the
performance of the HTD-MXAI Seizure Detection

Table 3. Comparative Performance of MobileNetV2, EfficientNetB0, and DenseNet121

Epileptic Seizure Detection Performance (%)

Classifier
#Parameters Accuracy Precision F1-score  Sensitivity Specificity AUC
MobileNetV/2 3.5M 52.40 52.40 68.77 100 0.0 50.45
EfficientNet-BO 53 M 52.40 52.40 68.77 100 0.0 52.17
DenseNet121 8.1M 95.43 93.35 95.18 97.09 93.99 97.89
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Fig. 4. Training and Validation Accuracy and Loss Curves across Folds

Model is further validated via 5-fold cross-validation on
the CHB-MIT dataset. A 5-fold cross-validation ensures
generalization to limited seizure data through a robust
and unbiased evaluation of the seizure detection
model. The details of the training protocol and
hyperparameter settings used to implement the
Transformer, DenseNet121, and ANN models are
presented in Table 2. To evaluate the performance of
the Hybrid epileptic seizure detection model, standard
performance metrics such as Accuracy, Precision, F1-
Score, Sensitivity, Specificity, and Area Under the ROC
Curve (AUC) are used. To assess the performance of
XAl techniques, metrics such as Faithfulness and
Completeness are employed in this study. These
metrics provide a quantitative evaluation of the SHAP-
based feature attributions with respect to model
prediction.

1. Result

This section presents the results of an extensive
evaluation of our proposed model on the CHB-MIT

dataset. The performance evaluation was conducted
considering different components and configurations to
identify and report the most effective version. We
presented the results from the experimental
evaluations, ablation studies, and validation in this
section.

A. Performance Comparison of Pretrained Models

Initially, we compared the performance of CNN-based
pre-trained models on the CHB-MIT dataset, including
MobileNetV2, EfficientNet-B0, and DenseNet121, for
extracting deep features from EEG data and classifying
seizure and normal EEG signals. We have chosen
MobileNetV2 and EfficientNet-BO models, considering
the computational cost. Because these models have
fewer than 10 million parameters, they are considered
lightweight and substantially reduce computational
cost. As these models are CNN-based, pre-trained on
large-scale datasets, they are fine-tuned on EEG data
and applied to test data to extract features and classify
the input. The input to these models is a 2D
spectrogram. MobileNetV2 and EfficientNet-BO have

Table 4. Impact of Combined Feature Extraction on Seizure Detection (in %)

Feature Extraction Accuracy Precision F1-score Sensitivity Specificity AUC
Transformer 83.48 82.35 81.55 80.77 85.71 84.78
DenseNet121 95.43 93.35 95.18 97.09 93.99 97.89
Hybrid-Automated
(Transformer+ 97.63 100 97.38 94.90 100 99.81
DenseNet121)
Handcrafted 94.58 93.84 94.49 95.15 94.05 98.44
Combined
Handcrafted+ 99.14 99.62 99.05 98.49 99.68 99.81
Automated
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shown poor performance on the CHB-MIT dataset.
Table 3 provides a comparative performance analysis
of MobileNetV2, EfficientNet-BO, and DenseNet-121
models for Epileptic Seizure Detection on the CHB-MIT
dataset. The DenseNet121 outperforms the other two
models, achieving an Accuracy of 95.43%, a Precision
of 93.35%, an F1-score of 95.18%, a Sensitivity of
97.09%, a Specificity of 93.99%, and an AUC of
97.89%.

B. Ablation Study and Model
Validation

An ablation study was conducted to analyze the
individual and combined contributions of the
Transformer and DenseNet121 models in extracting
automated features for seizure detection. Additionally,
an ablation study was conducted to evaluate
classification performance with handcrafted features
alone and with handcrafted and automated features
combined. Table 4 illustrates the impact of combining
automated and handcrafted features on seizure
detection. The results demonstrate that DenseNet121
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outperforms the Transformer model. However, the
Hybrid approach achieves the highest performance,
with an accuracy of 97.63%, a precision of 100%, an
F1-score of 97.38%, a sensitivity of 94.90%, a
specificity of 100%, and an AUC of 99.81% after fusing
features extracted from the Transformer and
DenseNet-121. The classification performance
achieved using handcrafted features alone is lower
than that obtained with automated features. The
combined approach of automated and handcrafted
features yields optimal classification performance with
an accuracy of of 99.14%, a precision of 99.62%, an
F1-score of 99.05%, a sensitivity of 98.49%, a
specificity of 99.68%, and an AUC of 99.81%.

The HTD-MXAI model was trained for 10 epochs
using a stratified 5-fold cross-validation. It was
observed that both training and validation losses
stabilized within the initial epochs, leading to early
convergence. Fig. 4 presents the training and
validation accuracy and loss trends across 5-folds,
which are examined to assess the model’s learning
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behavior. In our experiments, the training and
validation accuracies remained consistently high
across all folds, and the small gap between them
indicates that the model did not merely memorize the
training data. Instead, it appeared to learn the
characteristics of the dataset effectively. Another
reassuring observation was that both loss curves
decreased steadily and approached very low values
after the initial epochs, suggesting that the optimization
process converged efficiently. Taken together, these
trends suggest that the proposed model not only fits the
data well but also generalizes to unseen samples,
which is crucial for its practical applicability.

C. Performance Evaluation of XAl Techniques

Further, this subsection reports the outcome of XAl
techniques integrated with the proposed epileptic
seizure detection model. The XAl techniques are
evaluated on the number of input test samples, including
seizure and normal segments. However, we report
findings on a seizure-specific input sample to emphasize
the proposed model’'s ability to correctly identify the
seizure segment and to demonstrate the effectiveness
of XAl techniques in interpreting the model’s decision.
The STFT spectrogram of the input test sample is
shown in Fig. 5. The spectrogram indicates seizure
activity between 5000 and 7000 milliseconds, as
indicated by a high-power concentration in the lower-
frequency bands, delta (0.5 to 4 Hz) and theta (4 to 8

Hz). It could represent the onset and propagation of an
epileptic seizure. The model correctly classified it as a
Seizure segment. The following explanations are
generated with the XAl techniques. Fig. 6 shows the
attention heatmap generated for the output of a
Transformer block. Attention weights provide temporal
explainability by highlighting EEG segments that most
strongly contribute to the classification decision. The
attention weights predominantly emphasize temporally
localized EEG segments corresponding to seizure-
related rhythmic activity and sustained discharges. Such
temporal concentration aligns with established clinical
observations that epileptic seizures exhibit distinct time-
evolving EEG patterns rather than uniform activity
across the entire recording [56]. Saliency maps are
used to highlight regions of importance for seizure
detection. Fig. 7 shows the saliency map generated for
the input EEG spectrogram. The saliency maps highlight
time-frequency regions corresponding to increased low-
frequency (delta, theta) and broadband power during
seizure intervals, which are well-known EEG signatures
of epileptic activity. These regions align closely with the
dominant energy components of the input spectrograms,
indicating that the model focuses on clinically meaningful
seizure-related patterns rather than artifacts. Similar
spectral characteristics during epileptic events have
been consistently reported in clinical EEG studies [56].
The SHAP is applied to explain the impact of automated,
handcrafted, and combined features on the model’s
prediction. Fig. 8 presents the SHAP summary plot for
automated features extracted through Transformer and
DenseNet121. It indicates that Feature 2571 is the most
important because it has the widest range of SHAP
values.

Fig. 9 visualizes the contribution of combined features
to the model's outcome. The SHAP values are sorted to
identify the top positive (supporting) and negative
(opposing) features. It helps interpret results by
identifying which features pushed the prediction toward
class 0 (Normal) or 1 (Seizure). This indicates that
automated features dominate handcrafted features.
Among the top 10 supporting features for classifying the
input segment as seizure, 8 features are extracted
through DenseNet121 (Feature 2571, 2563, 2634, 2578,
2604, 2590, 2623, 2674), 1 feature is extracted through
Transformer (Feature 2560), and 1 is a handcrafted
feature (Feature 2796 referring to skewness). After

Table 5. XAl Performance Evaluation

XAl Original Accurac Perturbed Faithfulness Completeness
Technique 9 y Accuracy P
(SHAP) 99.14% 58.20% 40.94% 1.00
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performing SHAP analysis on handcrafted features and
grouping them, the results demonstrate that the Time-
domain features dominate the Spectral and Spatial
features. The “Skewness” is quantified as the most
important feature, along with “Kurtosis,” which also has

the same importance. The neurophysiological basis for
the pivotal role of higher-order time-domain statistics, in
particular skewness and kurtosis, lies in the occurrence
of sharp transients and non-Gaussian amplitude
distributions in epileptic seizures. The prevalence of

Table 6. Subject-wise Performance Comparison of Individual and Hybrid models on the CHB-MIT Dataset

Patient ID Classifier Performance (%)
Accuracy Precision F1-Score Sensitivity Specificity AUC
CHBO1 Transformer 98.97 100 98.92 97.87 100 99.96
DenseNet121 97.94 97.87 97.87 97.87 98 98.29
Hybrid 98.97 100 98.92 97.87 100 100
CHBO02 Transformer 95.08 87.5 90.32 93.33 95.65 97.75
DenseNet121 100 100 100 100 100 100
Hybrid 93.44 92.30 85.71 80 97.83 99.42
CHBO3 Transformer 95.69 97.43 95 92.68 98.07 99.62
DenseNet121 100 100 100 100 100 100
Hybrid 100 100 100 100 100 100
CHBO04 Transformer 94.82 100 80 66.67 100 97.95
DenseNet121 96.55 100 87.5 77.78 100 99.77
Hybrid 100 100 100 100 100 100
CHBO05 Transformer 98.14 100 98.03 96.15 100 100
DenseNet121 100 100 100 100 100 100
Hybrid 100 100 100 100 100 100
CHBO06 Transformer 98.96 100 98.92 97.87 100 100
DenseNet121 96.90 100 96.70 93.61 100 99.57
Hybrid 100 100 100 100 100 100
CHBO7 Transformer 100 100 100 100 100 100
DenseNet121 100 100 100 100 100 100
Hybrid 100 100 100 100 100 100
CHBO08 Transformer 93.79 93.40 94.97 96.59 89.47 97.15
DenseNet121 100 100 100 100 100 100
Hybrid 93.10 92.39 94.44 96.59 87.71 98.21
CHB10 Transformer 97.94 97.87 97.87 97.87 98 99.70
DenseNet121 100 100 100 100 100 100
Hybrid 98.96 97.92 98.95 100 98 99.74
CHB23 Transformer 98.59 94.74 97.29 100 98.11 100
DenseNet121 100 100 100 100 100 100
Hybrid 100 100 100 100 100 100
CHB24 Transformer 98.83 100 98.41 96.87 100 99.59
DenseNet121 96.51 91.42 95.52 100 94.44 99.82
Hybrid 100 100 100 100 100 100
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time-domain features over spectral-spatial features
suggests that short-term temporal irregularities are more
important than long-term frequency patterns for
differentiating events of different sizes. This observation
corroborates clinical EEG interpretation, in which seizure
onset is more strongly determined by acute temporal
features than by sustained spectral changes, supporting
the conclusion that the developed feature set is both
clinically interpretable and relevant.

In addition to visual and quantitative explainability
mechanisms, the proposed model produces brief textual
explanations based on the attention factors of the model.
In particular, attention weights computed by the
Transformer are pooled over feature dimensions and
translated to hand-crafted EEG frequency bands (i.e.,
delta, theta, alpha, beta, gamma). The relative
contribution of individual bands is converted into
percentages of the total attention, and the most
dominant band is interpreted in a human
comprehensible form (such as a strong influence on the
theta band). These textual explanations are lightweight
and automatically generated, aimed at giving clinicians
attention visualizations and feature attributions based on
SHAP. The quantitative explanation is formulated as
scores computed from the transformer's attention
weights and SHAP values. These values quantify the
features that are important for seizure detection.

The SHAP technique is applied globally to the ANN
classifier to assess how accurately its explanations
represent the model’s decision process. The evaluation
examines whether the features identified by SHAP
actually influence the model’s decision. It was observed
that the classification accuracy dropped significantly,
from 99.14% to 58.20%, after removing the top 40% of
features with the highest attribution scores, as
identified by the SHAP XAl technique. The Perturbed
Accuracy of 58.20% indicates that the model relies
heavily on the removed features for seizure detection.
Therefore, in our case, SHAP is faithful in analyzing
feature importance and depicting the model’s behavior.
Table 5 illustrates that SHAP achieves a Faithfulness
score of 40.94% and a Completeness score of 1.00.

D. Subject-Specific Performance Evaluation

The model’s performance was evaluated on a single
dataset across two settings: aggregated data across all
subjects and subject-specific data. It is essential to
assess the model’s performance on individual subjects,
as seizure morphology, frequency patterns, and EEG
characteristics vary substantially across individual
subjects. While the proposed model was trained and
evaluated on EEG recordings from 21 patients in the
CHB-MIT dataset, Table 6 reports subject-wise
performance for a subset of patients. We evaluated the
individual models, Transformer, DenseNet121, and the
Hybrid model, combining features from both models
across different subjects. The results demonstrate that
the proposed model can adapt to subject-specific
variations in seizure patterns. The remaining subjects
contribute to the overall performance metrics and
exhibited comparable classification trends. Although
the proposed hybrid model consistently performs
competitively across subjects, its effectiveness is
influenced by differences in individual EEG
characteristics and data distributions. Further, the
findings from the experimental evaluation are
interpreted in the following section.

V. Discussion

The proposed HTD-MXAI model aims to improve the
performance of Deep Learning-based epileptic seizure
detection while providing interpretability for the model’'s
detection. The experimental evaluation reveals that the
hybrid approach using Transformer and DenseNet1 21

for automated feature extraction, along with
handcrafted features, improves the model's
performance in detecting seizures. Initial

experimentation guides the selection of suitable DL
models to achieve optimal performance. The results
reveal that the components of HTD-MXAI ensure

optimal, robust performance in detecting epileptic
seizures. The significance of integrating these
components is discussed here, highlighting their
complementary roles in improving model performance

Table 7. Comparative Performance of Transfer Learning-based Epileptic Seizure Detection Work on CHB-

MIT Dataset
Auth v A h Performance (%)
uthors ear pproac Accuracy Sensitivity Specificity
. Alexnet, Darknet19,
A.A.Ein Shoka, etal, 5055 Googlenet, ResNet50, 86.11 88.89 -
[14]
SqueezeNet
S. Pattnaik, et al., [15] 2024 ResNet50 95.23 99.54 90.28
Proposed 2025 Hybrid DenseNet121- 99.14 98.49 99.68

Transformer-ANN
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Table 8. Comparative Performance of Transformer-based Approaches for Epileptic Seizure Detection on

CHB-MIT Dataset

Performance (%)

Author Year Approach
Accuracy Sensitivity Specificity
N. Ke., et al., [21] 2022  Convolutional Transformer 97.56 96.02 97.94
Lightweight Convolution
S. Rukhsar, et al., [22] 2023 Transformer 96.31 96.82 -

Y. Ru, etal., [23] 2024  ONN+Transformer Self- 92.89 96.17 92.99
attention

Proposed 2025 Hybrid -Transformer- 99.14 98.49 99.68

DenseNet121-ANN

and interpretability. The performance of the proposed
HTD-MXAI is compared with several existing Epileptic
Seizure Detection research studies [2, 14, 15, 21, 22,
23, 24, 25, 26, 29, 37, 38, 41], including CNN-based

pre-trained models, transformer models, hybrid
models, and XAl-based models. All benchmark
comparisons are reported using aggregated

performance metrics across the evaluated subjects to
enable a fair, high-level comparison with previously
published CHB-MIT-based studies.

Initially, the study employs a transfer-learning
approach using CNN-based pre-trained models, such
as MobileNetV2, EfficientNet-B0, and DenseNet121, to
extract features from EEG data. These models are
trained on a large ImageNet dataset. Using a transfer-
learning approach, these models are fine-tuned on
EEG data to extract features. Instead of training a
model from scratch, the learned parameters on
ImageNet are transferred to these models. It takes less
time for training and can be used with scarce labelled
data. This results in reduced computational cost and
improved generalization on limited data. As
demonstrated in Table 3 of the results section,
DenseNet121 outperforms MobileNetV2 and
EfficientNet-BO. It shows that MobileNetV2 and
EfficientNet-BO completely ignore the normal class.
The 100% sensitivity indicates that these models
cannot distinguish between non-seizure patterns and
predict all samples as seizures, resulting in poor real-
world performance on the CHB-MIT dataset for seizure
detection. In contrast, DenseNet121 demonstrated
balanced performance and effectively classified
seizure samples. Hence, we selected DenseNet121
over MobileNetV2 and EfficientNet-B0 to capture deep
spatial features from EEG data.

Table 7 presents a comparative analysis of the
proposed HTD-MXAI model with existing studies that
employ a transfer-learning-based approach for
Epileptic Seizure Detection on the CHB-MIT dataset.
The study reported by A. A. Ein Shoka et al. [14]

evaluated multiple CNN-based pretrained models,
such as AlexNet, Darknet19, GoogLeNet, ResNet50,
and SqueezeNet. GooglLeNet outperformed other
models, achieving moderate accuracy and sensitivity,
thus indicating their limited ability to fully capture the
complex seizure patterns. The recentstudy by S.
Pattnaik et al. [15] employs transfer learning with a pre-
trained ResNet-50 model for seizure classification,
using 2D scalograms as input. The study reports
improved Sensitivity; however, specificity remains
relatively low, suggesting potential false-positive
detections. In contrast, the proposed hybrid
Transformer-DenseNet121-ANN approach achieves
the highest accuracy of 99.14% and specificity of
99.68%, demonstrating a more balanced performance.
It suggests that combining dense spatial features with
Transformer-based temporal modeling is more
effective than standalone pretrained models in
capturing both local and long-range dependencies via
transfer learning.

The performance of the proposed HTD-MXAI model
is compared with recent Transformer-based Epileptic
Seizure Detection approaches on the CHB-MIT
dataset, as depicted in Table 8. The studies by N. Ke
et al. [21] and S. Rukhsar et al. [22] demonstrate that
the convolutional transformers have a strong ability to
capture the temporal dependencies among the EEG
data, but with lower accuracy and sensitivity. Y. Ru et
al. [23] combined CNNs with self-attention to improve
the temporal modeling, but it resulted in reducing
overall accuracy. In contrast, the effectiveness of the
proposed hybrid  Transformer-DenseNet121-ANN
model in the epileptic seizure detection task is
demonstrated by achieving the highest accuracy,
Sensitivity, and Specificity of 99.14%, 98.49%, and
99.68%, respectively. It indicates that joint modeling of
rich spatial representations and long-range temporal
dependencies improves seizure detection reliability.

Manuscript Received 03 December 2025; Revised 25 January 2026; Accepted 03 February 2026; Available online 07 February 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1380

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

464


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1380
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 447-472

e-ISSN: 2656-8632

Table 9. Comparative Performance of Hybrid Approaches for Epileptic Seizure Detection on CHB-MIT

Dataset
Performance (%)
Author vear Approach Accuracy  Sensitivity Specificity
M. K. Alharthi, et al., [2] 2022 CNN-Bi-LSTM-AM 96.87 96.85 -
T. Zhou, et al., [24] 2023 CNN-LSTM 98.79 97 -
J. Xu, et al., [25] 2024 GCN-BiGRU 97.35 98.85 95.83
X. Dong, et al., [26] 2024 TCN-Bi-LSTM 97.09 94.13 97.13
Proposed 2025 Hybrid Transformer- 99.14 98.49 99.68

DenseNet121-ANN

Table 9 compares the performance of the proposed
HTD-MXAI model with existing hybrid approaches
applied for epileptic seizure detection on the CHB-MIT
dataset. The prior studies combined CNNs with RNNs or
utilized Graph-based learning. M. K. Alharthi et al. [2]
applied CNN-BIiLSTM with an attention mechanism to
model the temporal dynamics of EEG and reported
promising accuracy and sensitivity. T. Zhou et al. [24]
employed a CNN with an LSTM to leverage sequential
modeling and reported competitive accuracy and
sensitivity. The proposed model shows improved
accuracy and sensitivity, which may be attributed to the
inclusion of Transformer-based global attention. J. Xu et
al. [25] presented a GCN-BiGRU model to capture both
spatial and temporal relationships among EEG data.
While effective, its reported accuracy and specificity are
lower than those of the proposed method. The difference
observed in performance may be influenced by the
architectural choice, where the study relies on a static
graph structure and recurrent temporal modeling. In
contrast, the proposed model applied Transformer-
based attention to effectively capture long-range
dependencies. X. Dong et al. [26] combined temporal
convolutions with Bi-LSTM to capture multiscale
temporal patterns, resulting in balanced performance.
The proposed model surpasses this approach by jointly
modeling  spatial, temporal, and long-range
dependencies. The proposed approach achieves the
highest accuracy, sensitivity, and specificity compared
with existing hybrid approaches, suggesting that
integrating deep feature extraction and Transformer
attention improves seizure detection.

As demonstrated in the Results section, the
integrated multimodal XAl approach effectively supports
the interpretation of the model's decision-making
process by providing visual, textual, and quantitative
explanations. The study aims to provide a quantitative
evaluation of the XAl techniques to better assess their

performance and address limitations in existing studies.
As illustrated in Table 5, the faithfulness score of 40.94%
indicates that removing the feature identified by SHAP
as important to the model significantly reduces seizure
classification performance, corroborating that the
explanations align with the model's actual decision-
making behavior. In the context of seizure detection
using EEG, such a loss in performance is clinically
significant, as it indicates that the model is learning in a
physiologically meaningful spectral-temporal manner
rather than merely from spurious patterns. The
completeness score of 1.00 provides additional
evidence for clinical trust, because the total effect of all
the SHAP attributions reconstructs the input-output
relation of the model, in compliance with the
completeness (local accuracy) axiom. Cumulatively,
these findings indicate that the XAl framework elucidates
sound and transparent rationales suitable for clinical
decision support applications.

The robustness of the proposed multimodal
explainability framework was empirically verified by
qualitatively comparing explanation outputs when the
EEG was slightly perturbed, including small changes in
amplitude and temporal delay. During these
perturbations, we observed that the attention weights
were still focusing on similar temporal locations, saliency
maps were still highlighting similar discriminative time-
frequency patterns, and SHAP values maintained
identical feature importance ranks. Such qualitative
consistency across diverse explanation modalities
suggests that the explanations do not strongly depend
on small input perturbations, thereby reinforcing their
robustness and supporting their potential use for reliable
clinical decision-making.

The visual explanations produced by saliency maps
and attention weights were qualitatively examined to
assess their consistency with known neurophysiological
characteristics of epileptic seizures. During seizure
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segments, saliency maps tend to emphasize high-
energy time-frequency regions in the spectrograms,
particularly within frequency bands commonly reported
in clinical EEG literature during ictal activity, while
attention weights focus on temporally localized
segments surrounding seizure onset. Although this
assessment is qualitative, the observed alignment with
established EEG patterns suggests that the learned
explanations are clinically reasonable. SHAP further
provides feature-level analysis that supports this
alignment by identifying higher-order moments, such as
skewness. Together, the attention weights, saliency
maps, and SHAP provide complementary explanations
across the temporal, spectral, and feature levels.

The performance of the proposed HTD-MXAI model
is compared with the existing Explainable Al-based
approaches. Table 10 presents a comparison of existing

Other recent works, including Sanchez-Hernandez et al.
[38], primarily focus on qualitative interpretability while
achieving modest detection accuracy. In contrast,
Mazurek et al. [41] incorporate attention mechanisms
and GNN-based explanations, but do not explicitly
assess the reliability of the generated explanations. The
proposed HTD-MXAI model differs in that it combines
strong detection performance with both qualitative and
quantitative evaluation of explainability, including
faithfulness and completeness measures. This
comparative analysis suggests that the proposed
approach offers a more balanced trade-off between
predictive accuracy and interpretability.

The superior performance of the proposed HTD-
MXAI model can be attributed to the complementary
strengths of its architectural components rather than a
single design choice. The Transformer encoder can

Table 10. Comparative Analysis of XAl-based Epileptic Seizure Detection on CHB-MIT Dataset

Performance (Classification Model)

XAl Techniques Performance Metrics for XAl

Author/ Acc Sen  Spec Precisi F1-
Year (%) (%) (%) on (%) S(czzge Visualization Qualitative Quantitative
M. Mansour, Feature bce;:?vrvrgclaa:?hne
etal.,, 2020, 97.04 97.65 95.58 95.40 - Relevance x
Feature
[29] Score
relevance
Y. Ding et Optimal
Channel
al.,2024, 95.31 9242 95.32 - - SHAP L X
combination
[37] o
determination
S.E.

Sanchez- Spearman's
Hernandez, 84 - - - - SHAP, LIME x rank correlation
et al., 2024, coefficient

[38]
Edge and
S. Mazurek, Attention Interpretation Feature
etal., 2024, 91.32 - - - 89.94 Mechanism, of El and FI Importance
[41] GNN Explainer Scores Score
. Faithfulness:
C;::im::fsn Feature 40.94%
Proposed 99.14 98.49 99.68 99.62 99.05 Saligncy’ Importance Completeness
Maps, SHAP 1.00

Note: (‘ -'indicates that the values are not reported in the reference study.)

Explainable Al-based Approaches with the proposed
HTD-MXAI model for Epileptic Seizure Detection on the
CHB-MIT Dataset. Earlier studies, such as those by
Mansour et al. [29] and Ding et al.[37], employ feature-
relevance analysis and SHAP-based explanations, but
report comparatively lower classification performance.

handle long-range temporal dependencies and global
EEG dynamics, and DenseNet121 extracts localized
spatial-spectral patterns from time-frequency
representations. By combining automatically learned
deep features with handcrafted time-frequency and
spatial-domain features, the system's discrimination
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performance is improved by retaining clinically
meaningful signal properties that may not be fully
captured by deep models alone. Furthermore, the intra-
modal multimodality input enables the model to jointly
capture temporal, spectral, and spatial cues that
contribute to more robust and generalizable seizure
representations as compared to unimodal or single-
architecture approaches. The proposed model offers
multimodal explainability by providing visual, textual, and
quantitative explanations of the model's decision-making
process.

In addition to aggregated evaluation, subject-specific
performance metrics are reported to analyze inter-
patient variability and robustness of the proposed model.

As presented in Table 6, the proposed hybrid
architecture  consistently improves or stabilizes
performance across most subjects, compared with the
individual Transformer and DenseNet121 models. For
subjects, e.g., CHB01, CHBO03, CHBO04, CHBO5,
CHBO06, CHBO07, CHB23, and CHB24, the hybrid model
achieved perfect to near-perfect performance,
suggesting the model's ability to capture spatial-
temporal representation effectively. In contrast, CHB02
and CHBO08 are more challenging cases, in which the
hybrid model achieved lower accuracy and F1-score
than DenseNet121. This indicates that seizure
manifestations may be more heterogeneous or subtle in
these subjects. These observations highlight the need
for subject-level evaluation to better understand the
model behavior.

Despite the model demonstrating promising resullts,
the following limitations should be acknowledged. First,
its effectiveness has not yet been validated across a
sufficiently diverse patient population, which is essential
before considering clinical deployment. Second, the
post-hoc integration of explainable Al (XAl) methods,
while valuable for interpretability, may introduce
additional computational overhead and increase system
latency. In particular, SHAP-based feature attribution
incurs a higher computational cost because the additive
nature of Shapley value estimation requires repeated
model evaluations to approximate each feature's
contribution. Also, attention visualization and saliency
map generation require extra forward and backward
passes. Although post hoc XAl techniques are applied,
they are not executed continuously during real-time
inference. They increase analysis latency and memory
usage during explanation generation, highlighting a
trade-off between interpretability and computational
efficiency. Future work will focus on optimizing
explanation pipelines and benchmarking inference-
explanation latency to assess feasibility in strict real-time
clinical settings. Ethical considerations related to XAl are

important, considering the clinical implications of
epileptic seizure detection. Biases presentin the training
data, such as patient imbalance, recording conditions, or
seizure subtype representation, may influence both
model predictions and their explanations, potentially
leading to misleading interpretations. While the
proposed XAl methods improve transparency, they do
not inherently eliminate such biases. Future work should
therefore include bias-aware training strategies and
diverse clinical datasets to ensure that explanations
remain reliable, clinically meaningful, and safe for real-
world deployment.

V. Conclusion

The study aimed to develop a multimodal, explainable
approach for detecting epileptic seizures. The proposed
model leverages advanced deep learning architectures,
such as Transformers and DenseNet121, to achieve
superior performance compared with existing
approaches. The model achieved an overall
(aggregated across subjects) accuracy of 99.14%, a
sensitivity of 98.49%, and a specificity of 99.68%,
outperforming the state-of-the-art models. High
sensitivity and specificity are of paramount importance
in medical applications because they ensure accurate
identification of true clinical conditions while minimizing
false diagnoses, thereby supporting safe and effective
patient care. The integration of XAl techniques
enhances model transparency, offering insight into
decision-making through visual, textual, and quantitative
explanations. The application of SHAP further enables
detailed feature-importance analysis, which may be
used for potential feature reduction and refinement.
These interpretability mechanisms aim to improve
clinical trust and facilitate broader acceptance among
healthcare professionals. Future work will focus on real-
time diagnosis using large-scale, diverse datasets.
Additionally, the research will be extended to develop an
explainable predictive model for forecasting epileptic
seizures, contributing further to proactive clinical
decision support.
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HTD-MXAI Multimodal Explainable Epileptic Seizure Detection
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