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Abstract Epilepsy carries a high risk of sudden death and increased premature mortality, highlighting the 

importance of automatic seizure detection to support faster diagnosis and treatment. The opacity of 

existing deep learning models limits their real-world application in diagnosing epileptic seizures, 

underscoring the need for more transparent and explainable systems.  Limited research studies are 

available on Explainable Artificial Intelligence (XAI)-based epileptic seizure detection, and these studies 

provide only a visual explanation for the model’s behaviour. Additionally, these studies lack validation of 

the XAI outputs using quantitative measures. Thus, this research aims to develop an explainable epileptic 

seizure detection model to address the limitations of existing black-box deep learning approaches. It 

proposes a novel Hybrid Transformer-DenseNet121-XAI (HTD-MXAI) integrated model for detecting 

epileptic seizures from EEG data. The proposed model leverages advanced deep learning architectures, 

namely the Transformer and DenseNet121, for automatic feature extraction, while simultaneously 

extracting handcrafted features from the time, frequency, and spatial domains. The XAI techniques, such 

as Attention Weights, Saliency Maps, and SHapley Additive eXplanations (SHAP), are integrated with the 

proposed model to provide multimodal explainability for the model’s decision-making process. The results 

demonstrate that the proposed model outperforms state-of-the-art models for seizure detection. It achieves 

an overall (aggregated across subjects) accuracy of 99.14%, Sensitivity of 98.49%, and Specificity of 

99.68% when applied to the CHB-MIT dataset. The Faithfulness score of 40.94% and completeness score 

of 1.00 indicate that the explanations provided by the XAI method for the model’s prediction are highly 

reliable. In conclusion, the proposed model offers a promising solution to the constraints, including the 

interpretability of black box models, limited multimodal explainability, and the validation of XAI techniques 

in the context of epileptic seizure detection. 

Keywords: Epileptic Seizure Detection; Multimodal Explainable AI; Transformer; DenseNet121; Transfer 
Learning; SHAP  

I. Introduction  

Epilepsy is a disorder of the nervous system that 
affects both children and adults, marked by the 
repeated and untriggered occurrence of seizures [1]. 
Epileptic seizures result from sudden disruptions in the 
Electroencephalogram (EEG) brain signals, affecting 
groups of brain cells and leading to involuntary 
movements, sensory disturbances, mood changes, 
cognitive impairment, and potential loss of 
consciousness, posing significant risks to individuals 
[2]. The risks associated with epileptic seizures, such 
as sudden unexpected death, injuries, 
unconsciousness, cognitive, and memory issues, are 
major concerns [3]. EEG is vital for capturing brainwave 
signals and recording brain activity. It plays a significant 
role in diagnosing epilepsy by providing helpful 
information regarding the changes in brain activity 
during seizures [4].  However, manually reviewing 
these long-hour recordings to identify seizures is time-

consuming and prone to error. The development of an 
automated system has emerged as a potential solution 
to support clinicians in the early diagnosis of epilepsy 
[5].  Detecting epileptic seizures offers valuable insights 
for early diagnosis, influencing treatment decisions. 
Recent approaches leverage Machine Learning (ML) 
and Deep Learning (DL) models to address the 
limitations of existing EEG signal processing methods. 
Deep learning enhances the analysis of EEG signals, 
benefiting research areas such as epilepsy, movement 
disorders, memory, depression, schizophrenia, and 
sleep [6]. Owing to the vast volumes of data and the 
implementation of deep learning, opaque models have 
effectively addressed challenges in real-world, life-
threatening scenarios [7].  

   Many researchers have applied Convolutional Neural 
Networks (CNNs) [8-10] and CNN-based pre-trained 
models with transfer learning [11-15] for detecting 
epileptic seizures.  The transfer learning approach, 
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which utilizes pre-trained models, reduces the training 
time for complex deep learning models and enhances 
their performance. CNNs can efficiently extract spatial 
features but cannot model long-range dependencies in 
sequential EEG time-series data [16]. To mitigate the 
limitations of CNNs, many existing studies have 
employed Recurrent Neural Networks (RNNs) [17] and 
their variants, such as Long Short-Term Memory 
(LSTM) [18] and Gated Recurrent Unit (GRU) [19], for 
seizure detection. Although RNNs and their variants 
like LSTM and GRU are effective at modeling 
sequential input data, they struggle to capture long-
range dependencies due to issues such as vanishing 
gradients and increased training time [20]. Advanced 
deep learning models, such as the Transformer, have 
been developed to address these limitations. 
Transformers leverage self-attention mechanisms to 
process sequential data in parallel, enabling them to 
learn long-range relationships efficiently. With these 
attention-based capabilities, the Transformer model 
excels in sequence-related tasks, demonstrating 
strong performance in analyzing EEG signals for 
Epileptic Seizure Detection [21-23]. Additionally, 
numerous researchers have employed hybrid models 
that combine the strengths of various architectures to 
enhance overall performance [2, 24-26]. 

   Although many advanced deep learning models have 
been applied in ongoing research on epileptic seizure 
detection, their black-box nature of these models 
hinders their adoption in the real world [27]. To 
overcome this challenge, Explainable Artificial 
Intelligence (XAI) has emerged as a pioneering 
technology for interpreting the behavior of complex 
deep learning models. This enables clinicians to trust 
the model's decision-making process and promotes its 
adoption in critical domains, such as healthcare [28]. 
Few research studies have utilized XAI for epileptic 
seizure detection with deep learning models. These 
studies lack user-understandable explanations for the 
models’ behavior and standard evaluation metrics for 
measuring the performance of XAI techniques. Recent 
research on explainable epileptic seizure detection 
spans a variety of deep learning approaches, yet key 
challenges persist. Deep learning models that utilize 
connectivity features, attention, CNNs, and Bi-LSTM 
architectures [29], as well asattention-based CNNs for 
spatial channel relevance [30] enhance performance 
but offer limited interpretability and incur high 
computational costs. Several studies integrate 
visualization-based XAI methods, such as gradient 
ascent and SHAP [31], SHAP-based hybrid CNN 
models [32], LRP with Bi-LSTM [33], Grad-CAM and 
attention visualization in CNNs and ViT models [34], 
and SHAP-supported tree ensembles [35-37], to 
highlight important features or channels. However, 
explanations often remain qualitative, dataset-specific, 

or weakly aligned with clinically meaningful ictal 
patterns. Siamese CNNs with SHAP and LIME [38], 
bagged-tree models with SHAP [39], and neonatal-
focused CNN-Graph Attention models with modified 
Grad-CAM [40] further emphasize interpretability but 
are constrained by dataset size, generalizability, and 
real-time applicability. Additional work explores 
explainable GNNs [41], interpretable SVM-based 
pipelines using clinically relevant features and t-SNE 
visualization [42], transfer-learning models with LRP 
[43], and classical classifiers combined with LIME and 
SHAP [44]; however, most are limited by qualitative 
evaluation and restricted datasets. Overall, despite 
these advances, significant gaps remain in achieving 
deeper interpretability, comprehensive multimodal 
explanations, and robust, quantitative evaluation 
metrics for XAI techniques in seizure detection. A 
comparative analysis of several state-of-the-art 
Epileptic Seizure detection research based on 
Explainable AI is given in Table 1. 

A. Motivation and Problem Formulation  

From the existing study on XAI-based Epileptic Seizure 
Detection, it is determined that there are still several 
research gaps that exist in the early diagnosis of 
epileptic seizures. 

1. Lack of Interpretability in Seizure Detection Models 

Although many ML and DL methods have been used 
for seizure detection, their decision processes remain 
largely opaque, and only a limited number of studies 
have applied XAI in this domain. To address this gap, 
this study proposes an explainable model for epileptic 
seizure detection. 

                            𝑔(𝑥) ≈ 𝑓(𝑥)                              (1) 

              argmin
𝑔∈𝐺

𝐿 (𝑓(𝑥), 𝑔(𝑥)) + 𝛺(𝑔)                  (2) 

Eq. (1) [45] formulates an explainable surrogate model 
𝑔(𝑥) that mimics 𝑓(𝑥) faithfully, where 𝑥 represents 

input EEG features. As described in Eq. (2) [45], the 
aim is to minimize the difference between the 𝑓(𝑥), 

which is a complex, deep-learning model and 𝑔(𝑥) 

which is a simple, explainable model. The loss function 
𝐿 measures how different 𝑔(𝑥) from 𝑓(𝑥) and how 

faithful the explanation is to the original model. G 
represents a class of simple interpretable models and 
𝛺(𝑔) represents a complexity penalty that tries to keep 

𝑔 simple and interpretable.  

2. Limited Multimodal Explainability in EEG-based AI 

Systems 

Understanding the epileptic behaviors and state 
transitions from the visual explanation alone affects the 
early diagnosis of Epilepsy. Hence, providing a 
multimodal explanation to doctors and patients with the 
hybrid feature extraction is essential to improve the 
model's reliability and efficiency. 
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Table 1. Comparative Analysis of Explainable-AI-based Studies on Epileptic Seizure Detection 

Year Approach Dataset 

XAI Technique Performance Metrics for XAI 

Visualization 
Textual 

Explanation 
Qualitative Quantitative 

2020 
[29] 

CNN, Bi-
LSTM 

CHB-MIT 
Feature 

Relevance  
 

Correlation 
between Feature 

relevance and 
scientific 

understanding 

 

2020 
[30] 

CNN with 
Attention 

TUH 
Attention 

topography  
 

Correlation 
between attention 
weights and EEG 

channels 

 

2021 
[31] 

CNN 
REPO 2 

MSE 
cohort, 

Gradient 
Ascent and 

SHAP 

 

Frequency 
components and 
spatial-temporal 

distribution  

 

2022 
[32] 

1D-CNN,  
3D-CNN 

Helsinki 
University 
Hospital 

SHAP  
User Feedback, 

Explanation 
Patterns  

User Study, 
t-test, Likert 

Scale Ratings 

2022 
[33] 

Bi-LSTM Bonn LRP  Visual Inspection  

2023 
[34] 

ResNet18, 
LeNet-5, 
VGG-11, 

Vision 
Transformer 

iEEG data 
(Juntendo 
University 
Hospital) 

Grad-CAM, 
Attention 

Layer 

 Visual Inspection  

2023 
[35] 

Ensemble-
based 

CatBoost 

SeizIt1 an
d SeizIt2 

SHAP  
Feature 

Importance 
 

2023 
[36] 

DT, kNN, LR, 
NB, RF, 

XGBoost, and 
SVM 

University 
of Beirut 
Medical 
Centre  

SHAP  
Feature 

Importance 
 

2024 
[37] 

LSTM CHB-MIT SHAP  
Optimal Channel 

Combination 
Determination 

 

2024 
[38] 

Siamese CNN 
(Wang_1d) 

CHB-MIT, 
Siena, 
TUSZ 

SHAP, LIME   
Spearman's 

rank correlation 
coefficient  

2024  
[39] 

Bagged Tree-
based 

classifier 
(BTBC) 

Bonn SHAP  
Feature 

Importance 
 

2024 
[40] 

Multilayer 
Perceptron 

(MLP) 

Helsinki 
University 
Hospital 

Grad-CAM  

Inspecting the 
relevance of each 
channel and time 

window 

 

2024 
[41] 

Attention-
based Graph 

Neural 
Network 
(GNN) 

CHB-MIT 

Attention 
Mechanism, 

GNN 
Explainer 

 
Interpretation of 
EI and FI Scores 

Edge 
Importance, 

Feature 
Importance 

Score  
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We considered a surrogate-based XAI approach in 
which the black-box model 𝑓(𝑥) is locally approximated 

using interpretable surrogate models.  

   argmin    
𝑔𝑣𝑔𝑡𝑔𝑞

∑ 𝐿 (𝑓(𝑥), 𝑔𝑒(𝑥)) +𝑒∈{𝑣,𝑡,𝑞} 𝛺(𝑔𝑒))                (3) 

Eq. (3) extends the surrogate-model optimization 
framework introduced in [45] multiple surrogate 
models. Eq. (3) formulates the multimodal explainable 
model, providing multiple forms of explainability, such 
as visual, textual, and quantitative, for a model’s 
prediction. 𝑥 represents the input EEG features, 𝑓(𝑥) 

denotes a DL-based model predicting seizure or 
normal class, 𝑔𝑣 , 𝑔𝑡,𝑔𝑞 represents visual, textual, and 

quantitative explanations, respectively. ‘e’ iterates over 
explanation forms. 

3. Challenges in Validating XAI Techniques 

Explainable AI is an emerging field of research. There 
is no standardized approach to applying its evaluation 
metrics, and existing studies lack quantitative validation 
of the XAI techniques. 

B. Key Contributions    

To address these issues, we have designed and 
developed a hybrid, multimodal explainable model for 
the early and effective detection of epileptic seizures.    
To improve clinical interpretability, a multimodal 
explainability approach is employed, closely aligned 
with the roles of the underlying model components and 
the types of explanations they naturally support. In 
particular, attention weights from the Transformer are 
used to convey both visual and quantitative information 
about the temporal relevance of raw EEG segments. 
The attention weights are directly interpretable from the 
model without needing external tools. Saliency maps 
applied to the DenseNet121-based spectrogram 
encoder visually emphasize time-frequency regions 
that are most influential in seizure-related feature 
learning, and SHAP is employed with the ANN 
classifier to provide visual and textual explanations of 
feature contributions based on additive attribution 

principles. SHAP provides both global and local 
explanations, quantifying the direction 
(positive/negative) of each feature's impact. Together, 
these techniques provide complementary perspectives 
on model behavior, capturing temporal relevance, 
spatial patterns, and the importance of descriptive 
features. This enables a more comprehensive and 
clinically meaningful interpretation of seizure 
predictions than relying on a single explainability 
method, such as LIME or Grad-CAM. We prefer SHAP 
over LIME due to its additive attribution guarantees and 
support for both local and aggregated explanations, 
which are important for clinical reliability, and we adopt 
saliency maps instead of Grad-CAM to obtain high-
resolution, input-level visualization of distributed 
seizure-related time-frequency patterns in EEG 
spectrograms. Thus, a unique combination of the 
Hybrid deep learning model and XAI techniques has 
great potential to enhance transparency and foster 
clinicians' trust in using complex deep learning models 
in clinical practice for early and effective diagnosis of 
epileptic seizures. 

   The main contributions of this research work are as 
follows: 

1. The study explores intra-modal multimodality, 

leveraging complementary representations derived 

from a single modality, EEG. Distinct from inter-

modal multimodal approaches, which fuse 

heterogeneous data sources (e.g., EEG with fMRI 

or ECG), intra-modal multimodal learning combines 

raw EEG and their time-frequency representations 

(spectrograms) to jointly capture complementary 

temporal and spectral seizure dynamics without 

increasing sensing complexity.  

2. The study utilizes a combination of automated and 
handcrafted features to enhance the seizure 
detection accuracy and model interpretability. 

3. The proposed model employs two different deep 
learning models: a Transformer to extract 

2024 
[42] 

SVM with 
Gaussian 

Kernel 

New 
Delhi, 
Bonn 

t-SNE  
Interpretable 

features 

Coefficient of 
Variation, 
Statistical 

Significance 
Testing 

2024 
[43] 

VGG16 Bonn LRP  
Interpretable 

features 
 

2024 
[44] 

SVM, KNN, 
RF 

CHB-MIT 
SHAP and 

LIME 
 

Interpretation of 
feature importance 

 

2025 
Propo

sed 

Hybrid 
Transformer-
DenseNet121

-ANN 

CHB-MIT 

Attention 
weights, 
Saliency 

Maps, 
SHAP 

 
Feature 

Importance 
 

Faithfulness-
40.94% 

Completeness 
1.00 
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sequential, temporal, and global contextual 
features, and DenseNet121 to extract Spatial, 
Spectral, and local visual patterns, providing a rich 
feature vector to discriminate between seizure and 
normal signals. 

4. By integrating different XAI techniques, such as 
Attention weights, Saliency maps, and SHAP with 
the proposed model, the study provides multimodal 
explanations, such as visual, textual, and 
quantitative, for the model’s decision-making 
process. 

This study is structured as follows: Section II describes 
the proposed methodology. Section III presents the 
results of the proposed model. Section IV interprets the 
findings, compares the results with existing studies, 
and discusses the limitations and related future work. 
Finally, Section V concludes the research.  

 

II. Method  
This research aims to design and develop a 
multimodal, explainable deep neural network model to 
enhance interpretability and facilitate early, efficient 
diagnosis of epileptic seizures. It proposes a Hybrid 

 
Fig.1.  Proposed HTD-MXAI Epileptic Seizure Detection Model 
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Transformer-DenseNet121-XAI (HTD-MXAI) 
integrated model for seizure detection using EEG data. 
The model uses intra-modal multi-modality input by 
combining 1-dimensional raw EEG time-series signals 
and 2-dimensional time-frequency images, along with 
handcrafted features extracted from the time, 
frequency, and spatial domains. In this work, a 
transformer model is applied to raw EEG data, whereas 
DenseNet121 is applied to spectrograms of EEG 
signals obtained via the Short-Time Fourier Transform 
(STFT). DenseNet121 learns local deep features from 
the time-frequency representations, whereas the 
transformer captures long-range temporal 
dependencies that CNNs typically struggle with due to 
their convolutional structure. These automatically 
learned features, together with handcrafted features, 
are fused and classified using an ANN. To address the 
limitations of prior work that focuses primarily on visual 
explanations, the proposed model delivers multimodal 
interpretability, visual, quantitative, and textual, 
providing deeper insight into model behavior and 
enhancing clinical transparency and trust. The design 
of the proposed HTD-MXAI consists of several steps, 
such as Data Preparation, Feature Extraction, Seizure 
classification, and integration of the XAI Module, as 

shown in Fig.1. 

A. Dataset 

The research uses the CHB-MIT scalp EEG dataset, 
available publicly via PhysioNet [46]. The dataset 
consists of recordings from 23 patients aged 1.5 to 22 
years, grouped into 24 cases. The data are sampled at 
256Hz, collected from 23 channels, and obtained from 
the Children’s Hospital Boston, with each patient's 
seizure and non-seizure files. The continuous 
monitoring of brain activity across multiple days and 
varying conditions for each patient enhances the 
dataset’s utility for developing robust and generalizable 
epileptic seizure detection models. The high sampling 
rate of 256 Hz preserves the temporal resolution 
necessary for accurate analysis of epileptic EEG 
patterns. Furthermore, the extensive scale of the 
dataset, comprising approximately 686 EEG 
recordings, enables the development and training of 
deep learning models tailored to epileptic seizure 
detection.   

B. Data Preparation  
1. Data Augmentation 

Although brain signal data is recorded over long 
durations, seizure recordings are only available for very 
short periods, lasting for a minute or even seconds, 
compared to non-seizure recordings. To address class 
imbalance between seizure and normal classes, the 
proposed model employs a Generative Adversarial 
Network (GAN) architecture. GAN generates synthetic 
seizure samples by adding random noise. The GAN 

comprises a Generator 𝐺𝜃, and a Discriminator 𝐷𝜙 . 

Both were implemented as fully connected neural 
networks operating on EEG-derived feature vectors. 

The Generator learns a mapping 𝐺𝜃 : ℝ𝑧 →  ℝ𝑑  , where 

𝑧 ∼ 𝒩 (0, 𝐼) denotes a latent noise vector and d is the 

dimensionality of the EEG feature space, producing 
synthetic samples, 𝑥̂ = 𝐺𝜃  (𝑧). The discriminator learns 

a mapping 𝐷𝜙: ℝ𝑑 → [0,1], outputting the probability 

that a given input sample is real. Architecturally, the 
generator consists of three hidden layers with ReLU 
activation followed by a Tanh-activated output layer, 
while the discriminator employs multiple ReLU-
activated hidden layers and a sigmoid output neuron. 
The networks are trained adversarially using the 
Generator and Discriminator loss functions as defined 
in Eq. (4) [47] and Eq. (5) [47]. 
The loss function of a Generator (G) is described as 
follows. 

                     𝐿𝐺 =  −
1

𝑛
∑ log (𝐷(𝐺(𝑠𝑖

𝑛
𝑖=1 )))                      (4)                                                                                        

Where n denotes the number of samples (batch size), 
𝑠𝑖 denotes random noise input to Generator G, 𝐺(𝑠𝑖) 
denotes a synthetically generated sample. 

The loss function of a Discriminator D is defined as 
follows. 

     𝐿𝐷 =  −
1

𝑛
∑ (log 𝐷(𝑥𝑖

𝑛
𝑖=1 ) + log (1 − 𝐷(𝐺(𝑠𝑖))))      (5)                                     

Algorithm 1 Pseudocode for GAN Training for 
Generating Synthetic EEG Data 

Input   : Real EEG Seizure Samples X 
Output: Trained Generator 𝐺𝜃   
(1) Initialize Generator 𝐺𝜃 and Discriminator 

𝐷𝜙  

(2) Set hyperparameters for the Adam 
Optimizer, lr=0.0002, and 𝛽1 = 0.5   

(3) for epoch=1 to n do 
(4)      Sample minibatch x from X  
(5)      Sample latent noise  𝑧 ∼ 𝒩 (0, 𝐼)   
(6)     Generate synthetic samples 𝑥̂ = 𝐺𝜃(𝑧) 

//Train Discriminator// 
(7)     Compute 𝐿𝐷 using Eq. (5) 
(8)     Update Discriminator parameters 𝜙 

//Train Generator// 
(9)     Sample new noise 𝑧 ∼ 𝒩 (0, 𝐼)  
(10)     Compute  𝐿𝐺 using Eq. (4) 

(11)     Update Generator parameters 𝜃 
(12) endfor 

(13) Return Trained Generator 𝐺𝜃  
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Where, 𝑥𝑖 represents a real EEG seizure sample from 

the dataset, D (𝑥𝑖) represents the output of the 

discriminator, i.e., probability of realness, 𝐷(𝐺(𝑠𝑖)) 

represents the discriminator’s output for the generated 
sample. The Adam optimizer is applied to perform the 
optimization with a learning rate of 0.0002 and 𝛽1 = 0.5, 

over 500 epochs with a batch size of 4. Algorithm 1 
describes the pseudocode of the GAN training loop. It 
details the data augmentation process employed by the 
proposed model, which uses a GAN. The pseudocode 
outlines the functionality of the Generator and 
Discriminator in detail.  

2. Data Preprocessing  

Preprocessing techniques, such as Independent 
Component Analysis (ICA) and Bandpass Filtering, are 
applied to remove artifacts and noise from raw EEG 
data. The pre-processed data are then segmented into 
10-second lengths to divide the continuous, long 
signals into smaller time windows. Also, the 20% 
overlap is used to maintain temporal continuity. Z-score 
normalization is used to center EEG signals at zero and 
scale their variance to 1. It helps the model to prevent 
feature dominance and learn effectively. Furthermore, 
this one-dimensional, pre-processed, and segmented 
data is fed as input to the transformer. 

3. Short-Time Fourier Transform (STFT) 

To prepare the input for CNN-based pre-trained 
models, the Short-Time Fourier Transform (STFT) is 
applied to the pre-processed data, converting the time-
domain signal into the frequency domain. It generates 
2-dimensional time-frequency images from the raw 
EEG signal, called Spectrograms. These 2D 
spectrograms are fed as input to the Pretrained model, 
DenseNet121. The STFT is mathematically defined in 

Eq. (6) [11], where x(t) represents the EEG signal as a 
function of time ‘t’, m represents the time shift of the 
window, 𝑤(𝑡 − 𝑚) represents a window function 

centered at time m, 𝑒−𝑗2𝜋𝑓𝑡 represents a complex 

exponential denoting a sinusoidal wave at frequency ‘f’.  

     𝑆𝑇𝐹𝑇{𝑥(𝑡)}(𝑚, 𝑓) = ∫ 𝑥(𝑡) 𝑤(𝑡 − 𝑚)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡      (6)  

In this study, a Hann window of length 256 samples (1 
s at a sampling frequency of 256 Hz) with 50% overlap 
(128 samples) is used to compute the STFT. Fig. 2 
describes the detailed process of data preparation 
shown above. 

C. Automated Feature Extraction 

The study employs two different deep learning 
architectures for automatically extracting features from 
EEG data: the Transformer model and DenseNet121, 
applied to different input forms of EEG data. 

1. Transformer 

The proposed framework adopts a Transformer-based 
encoder to analyze one-dimensional, pre-processed 
EEG signals, enabling the model to capture their 
underlying temporal and sequential dynamics. The 
architecture is composed of several stacked encoder 
blocks, each incorporating multi-head self-attention, a 
position-wise feed-forward network, residual pathways, 
and layer normalization. A Global Average Pooling 
(GAP) layer is applied at the final stage to aggregate 
the learned representations. Let 𝑋 ∈ 𝑟ℝ𝑇×𝐶 denote a 

pre-processed one-dimensional EEG segment, where 
𝑇 represents the length of the segment and  𝐶 denotes 

the number of EEG channels. The input sequence is 
first linearly projected into a higher-dimensional 
embedding space of dimension 𝑑model before being fed 

into the Transformer encoder. Since the Transformer 

 
Fig.2. Data Preparation 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i2.1380
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 2, April 2026, pp: 447-472         e-ISSN: 2656-8632 

 

Manuscript Received 03 December 2025; Revised 25 January 2026; Accepted 03 February 2026; Available online 07 February 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i2.1380 

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 454               

architecture does not inherently encode temporal 
order, a positional encoding is added to the input 
embeddings to preserve sequential information. The 

positional encoding matrix 𝑃 ∈ ℝ𝑇×𝑑model  is defined as in 

Eq. (7) [48]: 

𝑃(𝑡,2𝑖) = sin (
𝑡

100002𝑖/𝑑model
)  , 

               𝑃(𝑡,2𝑖 + 1) = cos (
𝑡

10000

2𝑖
𝑑model

)                      (7)  

The final input to the Transformer encoder is computed 
as in Eq. (8) [48]: 
                                            𝑍 = 𝑋𝑊𝑒 + 𝑃                           (8) 

where 𝑊𝑒 ∈ ℝ𝐶×𝑑model  is the learnable embedding 

matrix. 
   Each Transformer encoder block consists of a multi-
head self-attention mechanism. Attention is computed 
through scaled dot-product operations using three 
projected vector sets-Query (Q), Key (K), and Value 
(V), and also the model learns three distinct weight 
matrices: the Query Weights (𝑊𝑄), the Key Weights 

(𝑊𝐾) and the Value Weights (𝑊𝑉) which are used to 

compute attention scores and contextual 
representations. For each attention head 𝑖 ∈ {1, … , ℎ}, 
the input sequence 𝑍 is linearly projected into Query, 

Key, and Value representations as described in Eq. (9) 
[48]. 

      𝑄𝑖 = 𝑍. 𝑊𝑖
𝑄,   𝐾𝑖 = 𝑍. 𝑊𝑖

𝑘 ,    𝑉𝑖 = 𝑋𝑣 . 𝑊𝑖
𝑣                 (9) 

The attention weights are computed by measuring the 
similarity between the query and key vectors. The 
attention output for head ‘i’ is formulated as in Eq. (10) 
[48], where 𝑑𝑘 denotes the dimension of the key 

vectors 

                     ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾𝑖

𝑇

√𝑑𝑘
)𝑉𝑖                  (10)  

The attention weights from multiple heads are 
concatenated using Eq. (11) [48], and the final 
projection matrix, 𝑊𝑜  is applied. 

        𝑀𝐻𝐴𝑡𝑡𝑛(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡[ℎ𝑒𝑎𝑑1 , … , ℎ𝑒𝑎𝑑ℎ]. 𝑊𝑜     (11) 

where 𝑊𝑂 ∈ ℝ𝑑model×𝑑model is the output projection 

matrix. 

The attention output is passed through a position-wise 
feed-forward network (FFN), applied independently to 
each time step as described in Eq. (12) [48]: 

                  FFN (𝑥) = max (0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2           (12) 

Where    𝑊1 ∈ ℝ𝑑model×𝑑𝑓𝑓, 𝑊2 ∈ ℝ𝑑𝑓𝑓×𝑑model, and 
𝑏1, 𝑏2  are learnable bias parameters. Residual 

connections and layer normalization are applied after 
both the attention and feed-forward sublayers to 
stabilize the training process. Each block processes the 
input sequence and extracts the high-level sequential, 
temporal, and brainwave frequency band-related 
features. These features are then refined using a 
Global Average Pooling operation applied along the 

temporal dimension. The feature vector is extracted 
from this layer and utilized for further processing. The 
final output of the stacked Transformer encoder layers 

is denoted as 𝐻 ∈ ℝ𝑇×𝑑model  

                      𝐹𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙,𝐺𝑙𝑜𝑏𝑎𝑙 =
1

𝑇
∑ 𝐻𝑡

𝑇
𝑡=1                    (13)  

Eq. (13) represents the standard temporal global 
average pooling operation used to aggregate 
sequence-level representations in transformer-based 
models [48]. In this work, a fixed-length feature vector 
of 2560 dimensions is produced for each EEG 
segment. 

2. DenseNet121 

The DenseNet121 processes 2D spectrograms using 
convolutional layers, extracting deep, hierarchical, 
spatial features and frequency-dependent patterns. In 
the modified architecture, the final classification layer 
of DenseNet121 is replaced with a convolution layer, 
Global Average Pooling (GAP), and a Fully Connected 
(Dense) layer. Let the input provided to the 
DenseNet121 be defined as 𝑋 ∈ ℝ224×224×3. Eq. (14) 

[49] formulates the output feature map at 𝑙𝑡ℎ layer. The 

𝑙𝑡ℎ layer receives the output feature maps from all 

preceding layers, where, [𝑥0, 𝑥1, … , 𝑥𝑙−1] denotes the 

concatenation of all output feature maps from 
preceding layers. 𝑇𝑙 represents a non-linear 

transformation at the layer, 𝑙 comprising batch 

normalization, RELU activation function, and 
convolution operations.   

                   𝑥𝑙 = 𝑇𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1])                     (14). 

The DenseNet121 outputs a feature embedding, a 

high-dimensional vector, defined as follows in Eq. (15) 

[49]. 

                            𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 ∈ ℝ7×7×1024                    (15) 

After that, the convolutional layer Conv2D with kernel 

K is applied to 𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 , as described in Eq. (16). It 

refines the extracted features by capturing additional 

spatial patterns further and reducing feature map 

dimensions from (7,7,1024) to (5,5,128), following the 

standard convolution activation formulation used in 

DenseNet-based architectures [49].   

                    𝐹𝑐𝑜𝑛𝑣 = 𝑅𝐸𝐿𝑈 (𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 ∗ 𝐾 + 𝑏)           (16) 

GAP has been widely adopted in CNNs to convert 

feature maps into compact vectors [50]. The feature 

vector is refined through Global Average Pooling 

(GAP), converting the (5,5,128) feature map into a 128-

dimensional feature vector by averaging across the 

spatial dimensions, as defined in Eq. (17) [50]. 

                                  𝐹𝐺𝐴𝑃 ∈ ℝ128                             (17) 

A compact, high-dimensional feature vector (f) is 

extracted through that layer and transferred for further 

processing as described in Eq. (18) [49].  

                       𝑓 = 𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡(𝑥)  ∈  ℝ𝑑                       (18) 
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Eq. (19) describes the automated extraction of spatial, 
spectral, and local features using DenseNet121 and 
spectrograms. A total of 128 features were extracted 
per segment using the DenseNet121 model.                          

      𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙−𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙,𝑙𝑜𝑐𝑎𝑙 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡(𝑥𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚)   (19) 

In this work, DenseNet121 is employed with a transfer-
learning strategy. The network is initialized with 
ImageNet pre-trained weights, and the convolutional 
backbone layers are frozen during training to preserve 
generic spatial feature representations. Only the newly 
added convolutional, Global Average Pooling, and fully 
connected layers are fine-tuned on EEG spectrogram 
data as implemented in our experimental setup. This 
design choice improves generalization, reduces 
overfitting on limited seizure samples, and ensures 
compatibility with the input spectrogram dimensions 
224 × 224 × 3. 

D.  Handcrafted Feature Extraction 

The study simultaneously extracts manual features 
from EEG data in both the time and frequency domains 
and computes spatial features. 

1. Time Domain (Temporal) and Statistical Features 

The time-domain features quantify the signals’ shapes, 
variability, and temporal distributions. The following 
temporal and statistical features are extracted from the 
EEG data: Mean, Standard Deviation (SD), Skewness, 
Kurtosis, Permutation Entropy (PE), Variance, Zero 
Crossing Rate (ZCR), and Root Mean Square (RMS). 

2. Frequency Domain (Spectral) Features   

Frequency-domain features, such as Band Power, 
Spectral Entropy, and Power Spectral Density (PSD) 
for the Delta, Theta, Alpha, Beta, and Gamma 
frequency bands, are computed and extracted. For a 
pre-processed EEG segment 𝑥(𝑡), the Power Spectral 

Density (PSD), 𝑃(𝑓) is estimated using Welch’s 

method. The band power for a frequency band [𝑓1, 𝑓2] is 

computed as in Eq. (20) [51]. 

                               𝑃𝑏𝑎𝑛𝑑 = ∫ 𝑝(𝑓)
𝑓1

𝑓2
𝑑𝑓                    (20) 

The mean Spectral Amplitude is computed as in Eq. 
(21) [51].  

                         𝜇𝑎𝑚𝑝 =
1

𝑁
∑ √𝑃(𝑓𝑘 )

𝑁

𝑘=1
                 (21) 

Where N denotes the number of frequency bins. The 
Spectral Entropy quantifies the complexity or disorder 
of the EEG signal’s frequency content. It is derived by 
normalizing the PSD and applying Shannon entropy as 
described in Eq. (22) [51].   

         𝐻𝑆𝑝𝑒𝑐 =  −
1

𝑙𝑜𝑔2 𝑁
∑ 𝑃̃(𝑓𝑘 )

𝑁

𝑘=1
𝑙𝑜𝑔2 𝑃̃(𝑓𝑘 )        (22) 

These features facilitate analysis of the frequency 
distributions of both seizure and non-seizure EEG 
signals. Specifically, analyzing waveform-based 
spectral features enables detection of variations in 

brain activity using amplitude and frequency. Spectral 
features in the frequency domain serve as a powerful 
representation, capturing key differences in the brain's 
functional and behavioural characteristics. 

3. Spatial Features 

Cross-correlation: This metric quantifies the similarity 
between two EEG signals from different channels. It 
computes the correlation for each pair and stores the 
mean cross-correlation for that pair. The final output is 
the average cross-correlation for each segment across 
all pairs of channels. 

Coherence: For each pair of channels, it calculates the 
cross-spectral density by multiplying the FFT of the first 
channel with the Fast Fourier Transform (FFT) of the 
other channel, using the conjugate of the first channel’s 
FFT. Finally, it computes coherence by normalizing the 
cross-spectral density by the product of the two 
channels' PSDs. 

Eq. (23) formulates the handcrafted feature extraction. 
It extracts 243 handcrafted features per segment.  

               𝐹𝐻𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑥𝐻𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 )        (23) 

E.  Feature Fusion 

The handcrafted and automated features extracted 
from the Transformer and DenseNet121 models are 
fused as described in Eq. (24), yielding a combined 
feature vector of size (None, 2931).       

𝐹𝑓𝑢𝑠𝑒𝑑 =

𝐹𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙,𝐺𝑙𝑜𝑏𝑎𝑙  ||  𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙−𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙,𝑙𝑜𝑐𝑎𝑙 || 𝐹𝐻𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑  (24) 

The details are as follows. The automated features 
through Transformer (1 to 2560), DenseNet121(2561 
to 2668), and Handcrafted features (Frequency (Delta: 
2689 to 2691, Theta: 2692 to 2694, Alpha: 2695 to 
2697, Beta: 2698 to 2700, Gamma: 2701 to 2703), 
Spatial (Correlation: (2704 to 2725) Coherence: (2726 
to 2747), Time (Mean: 2748 to 2770, SD:2771 to 2793, 
Skewness: 2794 to 2816, Kurtosis: 2817 to 2839, PM: 
2840 to 2862, Variance: 2863 to 2885, ZCR:2886 to 
2908, RMS: 2909 to 2931) 

F.  Classification 

The resulting fused feature representation 𝐹fused ∈
ℝ2931 is provided as input to a fully connected Artificial 

Neural Network (ANN) for final classification. The ANN 
consists of three hidden layers with 128, 64, and 32 
neurons, respectively, each employing the ReLU 
activation function, followed by dropout regularization 
to mitigate overfitting. The output layer contains a 
single neuron with sigmoid activation to perform binary 
classification (seizure vs. normal). The forward 
propagation of the ANN is defined in Eq. (25) [52].   

ℎ1 = 𝑅𝑒𝐿𝑈 (𝑊1𝐹fused + 𝑏1 ), ℎ2 = 𝑅𝑒𝐿𝑈 (𝑊2ℎ1 + 𝑏2), 

ℎ3 = 𝑅𝑒𝐿𝑈 (𝑊3ℎ2 + 𝑏3),  𝑦̂ = 𝜎 (𝑊0ℎ3 + 𝑏0)             (25) 

where  𝑊𝑖  and 𝑏𝑖 denote the trainable weights and 

biases of the 𝑖𝑡ℎlayer, and 𝜎(⋅)represents the sigmoid 
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activation function. The network is optimized using the 
Adam optimizer by minimizing the binary cross-entropy 
loss function as described in Eq. (26) [52].  

             ℒ = −[𝑦 log ( 𝑦̂ ) + (1 − 𝑦) log(1 − 𝑦̂)]         (26) 

where 𝑦 ∈ {0,1}denotes the ground-truth class label 

and 𝑦̂ is the predicted probability of seizure occurrence. 

The detailed architecture of the proposed model, 
comprising its core components, is shown in Fig. 3. 

G.  Multimodal Explainable AI module    

The proposed model integrates various XAI 
techniques, such as Attention Weights, Saliency Maps, 
and SHAP values, with the Hybrid Transformer-
DenseNet121-ANN model to interpret the model's 
decision-making process. The visual explanation is 
presented using heatmaps of attention weights 
computed by the Transformer's self-attention 
mechanism and saliency maps for DenseNet-121, 
highlighting the input regions critical for seizure 
detection. The quantitative explanation is incorporated 
using attention weights for important features. The 

proposed model produces structured textual 
explanations by analyzing Transformer attention 
weights. The attention scores are aggregated and 
mapped to predefined EEG frequency bands (delta, 
theta, alpha, beta, and gamma), and the relative 
contributions of these bands are expressed as 

percentages. It reports the dominant frequency band 
affecting model predictions in a compact, rule-based 
textual format, thereby providing a human-readable, 
interpretable explanation in the frequency domain 
without using post hoc language generation. 

   SHAP assigns an importance value to each feature 
based on its contribution to the model’s output, 
grounded in cooperative game theory. The SHAP value 

𝜙𝑖 for the 𝑖𝑡ℎ feature is computed using the Shapley 

value formulation, as described in Eq. (27) [53].   

        𝜙𝑖 = ∑
∣𝑆∣!(∣𝐹∣−∣𝑆∣−1)!

∣𝐹∣!𝑆⊆𝐹∖{𝑖}
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]    (27) 

where 𝐹  denotes the set of all features, 𝑆 is a subset of 

features excluding the feature 𝑖, and 𝑓(⋅) represents 

the trained model’s prediction function. This formulation 

 
Fig.3.  Architecture of Hybrid Transformer-DenseNet121-ANN Seizure Detection Model 
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ensures properties such as local accuracy, 
consistency, and missingness. Eq. (28) describes the 
multimodal explainable model that utilizes the above 
XAI techniques to explain the prediction made by the 
classifier for the input signal.  

   𝑦̂ →  𝑀𝑋𝐴𝐼(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡, 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦, 𝑆𝐻𝐴𝑃)    (28)  

      We evaluated the faithfulness of the generated 
explanations using an accuracy-drop perturbation test 
on the features. Faithfulness determines how well the 
explanation aligns with the model’s prediction. The 
attribution values are computed for the features, and 
the features are then ranked based on the attribution 
scores generated by the XAI technique. The top 40% 
of features by attribution were removed, and the 
modified feature vectors were then passed through the 
trained model to determine how their removal affects 
the model's predictive performance. In this work, we 
define the faithfulness score as the reduction in model 
accuracy after removing the most important features, 
as shown in Eq. (29), as follows [54]. 

𝐹𝑎𝑖𝑡ℎ𝑓𝑢𝑙𝑛𝑒𝑠𝑠 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 −
𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦                                                      (29)    

A high score indicates that removing highly attributed 
features causes greater performance degradation. This 
indicates that the explanation is more representative of 
the model's true decision-making behavior. This 
method is consistent with perturbation-based 
faithfulness evaluation in the explainable AI literature 
[54], where performance drops have been used as an 
indicator of how well aligned explanations are with 
model reliance. 

Algorithm 2.  Pseudocode for Proposed HTD-
MXAI Model for Epileptic Seizure Detection 

Input   : Raw EEG Signals 
Output: Seizure and Normal signals, Visual, 

Quantitative, and Textual Explanation    
//Data Augmentation// 

(1) Acquire EEG recordings  
(2) Separate seizure and non-seizure 

recordings 
(3) Apply GAN to generate synthetic seizure 

samples using Eq. (4) and Eq. (5) 
(4) Concatenate the synthetically generated 

data with the original EEG data 
//Preprocessing// 

(5)  for concatenated input EEG data in step 
4 do 

(6) Apply Independent Component 
Analysis (ICA)  

(7) Apply a Bandpass filter  

(8) Apply Segmentation and overlapping 

 

 (9) Apply normalization using 𝑆′ =
𝑆−𝜇

𝜎
 

(10) Apply Short-Time Fourier Transform 
(STFT) using Eq. (6) 

 //Transfer Learning// 
(11) Load the pretrained DenseNet121 model 

(12) Train the model on concatenated EEG 
data 

 //Automated Feature Extraction// 

(13) for the preprocessed EEG segment in 
step 9 do 

(14) Apply the proposed Transformer 
model  

(15) Reduce feature dimensions using 
Global Average Pooling (GAP) 

(16) Store the feature vector 

(17) endfor 

(18) for 2D spectrograms in step 10 do 

(19) Apply the DenseNet121 model  

(20) Reduce feature dimensions using 
Global Average Pooling (GAP) 

(21) Store the feature vector 

(22) endfor 

 //Handcrafted Feature Extraction// 

(23) for the normalized EEG segment in step 
9 do 

(24) Compute time-domain features,  

Mean  𝜇 =
1

𝑁
∑ 𝑠𝑖

𝑁
𝑖=1 ,  

SD  𝜎 = √
1

𝑁
∑ (𝑠𝑖 − 𝜇)2𝑁 

𝑖=1  

Skewness  𝑆𝑘 =
1

𝑁 
 ∑ (

𝑠𝑖−𝜇

𝜎
)3𝑁

𝑖=1 , 

Kurtosis 𝐾 =
1

𝑁 
∑ (

𝑠𝑖−𝜇

𝜎
)4𝑁

𝑖=1  ,  

     PE, Variance, ZCR, and RMS 
(25) Compute frequency-domain features 

using Eq. (20) to Eq. (22) 
(26) Compute Spatial features 

(27)  Store a handcrafted feature vector 

(28)  endfor 

 //Feature Fusion// 

(29) Fuse the handcrafted features and the 
automated features extracted through 
the Transformer and DenseNet121 in 
steps 16,21, and 27 

 //Seizure Detection// 

(30) Input the fused features to a feed-
forward Artificial Neural Network (ANN) 

(31) Apply a feed-forward Artificial Neural 
Network (ANN) on test samples  

(32) Classify seizure and normal EEG 
segments 
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   Another measure used to evaluate the performance 
of XAI techniques is the completeness score. It 
measures whether the sum of all feature attributions 
approximates the model output. SHAP satisfies the  

completeness (local accuracy) axiom, where the 
prediction for an input can be expressed as a sum of 
the output for a baseline instance and feature 
attributions, as shown in Eq. (30) [55]. 𝜙𝑖 denotes 

SHAP attribution of feature ‘i’. 

                    𝑓(𝑥) = 𝑓(𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) + ∑ 𝜙𝑖
𝑛
𝑖=1                   (30) 

Since the original definition of SHAP does not yield a 
scalar value for completeness fidelity, we defined a 
Completeness Score using Eq. (31) on the basis of the 
completeness axiom, referring to Eq. (30), on how well 
the SHAP attributions reconstruct the model output. A  

 

score of 1 indicates perfect fidelity, while lower values 
indicate deviation.  

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 1 − | 𝑓(𝑥) − (𝑓(𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) + ∑ 𝜙𝑖
𝑛
𝑖=1 )|                                               

(31) 

The pseudocode of the proposed model is presented in 

Algorithm 2. It describes the workflow and step-by-step 

procedure of the proposed model. It is included to 
improve the understanding, clarity, and reproducibility 
of the proposed work, thus allowing the researchers to 
implement and validate the proposed work. 

H.  Experimental Settings and Performance Metrics  

The proposed model is evaluated using data from 21 
patients in the CHB-MIT dataset, comprising 160 
seizures. Cases 12 and 13 have recurrent variations in 
channel configuration, whereas case 24 has insufficient 
seizure data during the EEG recordings. Thus, these 
cases were excluded during the experimentation. The 
dataset is divided into 60% for training, 20% for 
validation, and 20% for testing. In addition, the 
performance of the HTD-MXAI Seizure Detection 

 //Integrating Multimodal XAI // 

 //Attention Weights// 

(33) for all transformer encoder blocks 

(34) for all heads do 

(35)  Extract Attention Weights from 
the attention layers 

(36)  endfor 

(37) 
Plot attention maps to visualize the 
time points  

(38) endfor 

 //Saliency Maps // 

(39) Apply Saliency Maps to compute 
gradients of DlenseNet121 and plot a 
heatmap 

 //SHAP // 

(40) for each input feature in step 29 

(41) Apply SHAP   

(42) Visualize feature importance using 
SHAP summary plots and bar plots 

(43) endfor 

 //Textual Explanation// 

(44) Generate a textual explanation based 
on the prediction outcome by the model 

(45) endfor 

 

Table 2. Implementation Parameters of the 
Proposed Model 

Parameters Transformer DenseNet121 ANN 

Number of 
Transformer 
Encoders 

2 N/A N/A 

Number of 
attention 
heads 

3 N/A N/A 

Dropout 
Rate 

0.2 0.2 0.3 

Learning 
Rate 

0.001 0.001 0.001 

Loss 
Function 

Binary 
Cross-
Entropy 

Binary Cross-
Entropy 

Binary 
Cross-
Entropy 

Batch Size 32 32 32 

 

Table 3. Comparative Performance of MobileNetV2, EfficientNetB0, and DenseNet121 

Classifier 
Epileptic Seizure Detection Performance (%) 

#Parameters Accuracy Precision F1-score Sensitivity Specificity AUC 

 MobileNetV2 3.5 M 52.40 52.40 68.77 100 0.0 50.45 

EfficientNet-B0 5.3 M 52.40 52.40 68.77 100 0.0 52.17 

 DenseNet121 8.1 M 95.43 93.35 95.18 97.09 93.99 97.89 
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Model is further validated via 5-fold cross-validation on 
the CHB-MIT dataset. A 5-fold cross-validation ensures 
generalization to limited seizure data through a robust 
and unbiased evaluation of the seizure detection 
model. The details of the training protocol and 
hyperparameter settings used to implement the 
Transformer, DenseNet121, and ANN models are 
presented in Table 2. To evaluate the performance of 
the Hybrid epileptic seizure detection model, standard 
performance metrics such as Accuracy, Precision, F1-
Score, Sensitivity, Specificity, and Area Under the ROC 
Curve (AUC) are used. To assess the performance of 
XAI techniques, metrics such as Faithfulness and 
Completeness are employed in this study. These 
metrics provide a quantitative evaluation of the SHAP-
based feature attributions with respect to model 
prediction.  

 

III. Result 

This section presents the results of an extensive 
evaluation of our proposed model on the CHB-MIT 

dataset. The performance evaluation was conducted 
considering different components and configurations to 
identify and report the most effective version. We 
presented the results from the experimental 
evaluations, ablation studies, and validation in this 
section. 

A. Performance Comparison of Pretrained Models 

Initially, we compared the performance of CNN-based 
pre-trained models on the CHB-MIT dataset, including 
MobileNetV2, EfficientNet-B0, and DenseNet121, for 
extracting deep features from EEG data and classifying 
seizure and normal EEG signals. We have chosen 
MobileNetV2 and EfficientNet-B0 models, considering 
the computational cost. Because these models have 
fewer than 10 million parameters, they are considered 
lightweight and substantially reduce computational 
cost. As these models are CNN-based, pre-trained on 
large-scale datasets, they are fine-tuned on EEG data 
and applied to test data to extract features and classify 
the input. The input to these models is a 2D 
spectrogram. MobileNetV2 and EfficientNet-B0 have 

Table 4. Impact of Combined Feature Extraction on Seizure Detection (in %) 

    Feature Extraction   Accuracy   Precision  F1-score   Sensitivity Specificity   AUC 

Transformer 83.48 82.35 81.55 80.77 85.71 84.78 

DenseNet121 95.43 93.35 95.18 97.09 93.99 97.89 

Hybrid-Automated 
(Transformer+ 
DenseNet121) 

97.63 100 97.38 94.90 100 99.81 

Handcrafted 94.58 93.84 94.49 95.15 94.05 98.44 

Combined 
Handcrafted+ 

Automated 
99.14 99.62 99.05 98.49 99.68 99.81 

 

 
Fig. 4. Training and Validation Accuracy and Loss Curves across Folds 
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shown poor performance on the CHB-MIT dataset. 
Table 3 provides a comparative performance analysis 
of MobileNetV2, EfficientNet-B0, and DenseNet-121 
models for Epileptic Seizure Detection on the CHB-MIT 
dataset. The DenseNet121 outperforms the other two 
models, achieving an Accuracy of 95.43%, a Precision 
of 93.35%, an F1-score of 95.18%, a Sensitivity of 
97.09%, a Specificity of 93.99%, and an AUC of 
97.89%.   

B. Ablation Study and Model Performance 

Validation  

An ablation study was conducted to analyze the 
individual and combined contributions of the 
Transformer and DenseNet121 models in extracting 
automated features for seizure detection. Additionally, 
an ablation study was conducted to evaluate 
classification performance with handcrafted features 
alone and with handcrafted and automated features 
combined. Table 4 illustrates the impact of combining 
automated and handcrafted features on seizure 
detection. The results demonstrate that DenseNet121 

outperforms the Transformer model.  However, the 
Hybrid approach achieves the highest performance, 
with an accuracy of 97.63%, a precision of 100%, an 
F1-score of 97.38%, a sensitivity of 94.90%, a 
specificity of 100%, and an AUC of 99.81% after fusing 
features extracted from the Transformer and 
DenseNet-121. The classification performance 
achieved using handcrafted features alone is lower 
than that obtained with automated features. The 
combined approach of automated and handcrafted 
features yields optimal classification performance with 
an accuracy of of 99.14%, a precision of 99.62%, an 
F1-score of 99.05%, a sensitivity of 98.49%, a 
specificity of 99.68%, and an AUC of 99.81%.  

   The HTD-MXAI model was trained for 10 epochs 
using a stratified 5-fold cross-validation. It was 
observed that both training and validation losses 
stabilized within the initial epochs, leading to early 
convergence.  Fig. 4 presents the training and 
validation accuracy and loss trends across 5-folds, 
which are examined to assess the model’s learning 

 
Fig. 5. Input Spectrogram 

 

 
Fig. 6. Attention Heatmap 

 

 
Fig. 7. Saliency Map 

 

 

 
Fig. 8. SHAP Summary Plot 
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behavior. In our experiments, the training and 
validation accuracies remained consistently high 
across all folds, and the small gap between them 
indicates that the model did not merely memorize the 
training data. Instead, it appeared to learn the 
characteristics of the dataset effectively. Another 
reassuring observation was that both loss curves 
decreased steadily and approached very low values 
after the initial epochs, suggesting that the optimization 
process converged efficiently. Taken together, these 
trends suggest that the proposed model not only fits the 
data well but also generalizes to unseen samples, 
which is crucial for its practical applicability.  

C. Performance Evaluation of XAI Techniques 

Further, this subsection reports the outcome of XAI 

techniques integrated with the proposed epileptic 

seizure detection model. The XAI techniques are 

evaluated on the number of input test samples, including 

seizure and normal segments. However, we report 

findings on a seizure-specific input sample to emphasize 

the proposed model’s ability to correctly identify the 

seizure segment and to demonstrate the effectiveness 

of XAI techniques in interpreting the model’s decision. 

The STFT spectrogram of the input test sample is 

shown in Fig. 5. The spectrogram indicates seizure 

activity between 5000 and 7000 milliseconds, as 

indicated by a high-power concentration in the lower-

frequency bands, delta (0.5 to 4 Hz) and theta (4 to 8 

Hz). It could represent the onset and propagation of an 

epileptic seizure. The model correctly classified it as a 

Seizure segment. The following explanations are 

generated with the XAI techniques. Fig. 6 shows the 

attention heatmap generated for the output of a 

Transformer block. Attention weights provide temporal 

explainability by highlighting EEG segments that most 

strongly contribute to the classification decision. The 

attention weights predominantly emphasize temporally 

localized EEG segments corresponding to seizure-

related rhythmic activity and sustained discharges. Such 

temporal concentration aligns with established clinical 

observations that epileptic seizures exhibit distinct time-

evolving EEG patterns rather than uniform activity 

across the entire recording [56].  Saliency maps are 

used to highlight regions of importance for seizure 

detection. Fig. 7 shows the saliency map generated for 

the input EEG spectrogram. The saliency maps highlight 

time-frequency regions corresponding to increased low-

frequency (delta, theta) and broadband power during 

seizure intervals, which are well-known EEG signatures 

of epileptic activity. These regions align closely with the 

dominant energy components of the input spectrograms, 

indicating that the model focuses on clinically meaningful 

seizure-related patterns rather than artifacts. Similar 

spectral characteristics during epileptic events have 

been consistently reported in clinical EEG studies [56]. 

The SHAP is applied to explain the impact of automated, 

handcrafted, and combined features on the model’s 

prediction. Fig. 8 presents the SHAP summary plot for 

automated features extracted through Transformer and 

DenseNet121. It indicates that Feature 2571 is the most 

important because it has the widest range of SHAP 

values. 

   Fig. 9 visualizes the contribution of combined features 

to the model’s outcome. The SHAP values are sorted to 

identify the top positive (supporting) and negative 

(opposing) features. It helps interpret results by 

identifying which features pushed the prediction toward 

class 0 (Normal) or 1 (Seizure). This indicates that 

automated features dominate handcrafted features. 

Among the top 10 supporting features for classifying the 

input segment as seizure, 8 features are extracted 

through DenseNet121 (Feature 2571, 2563, 2634, 2578, 

2604, 2590, 2623, 2674), 1 feature is extracted through 

Transformer (Feature 2560), and 1 is a handcrafted 

feature (Feature 2796 referring to skewness). After 

 
Fig. 9. Top 10 SHAP Features for Predicted 

Seizure Class 

Table 5. XAI Performance Evaluation 

XAI 
Technique 

(SHAP) 

Original Accuracy 
Perturbed 
Accuracy 

Faithfulness Completeness 

99.14%   58.20% 40.94% 1.00 
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performing SHAP analysis on handcrafted features and 

grouping them, the results demonstrate that the Time-

domain features dominate the Spectral and Spatial 

features. The “Skewness” is quantified as the most 

important feature, along with “Kurtosis,” which also has 

the same importance. The neurophysiological basis for 

the pivotal role of higher-order time-domain statistics, in 

particular skewness and kurtosis, lies in the occurrence 

of sharp transients and non-Gaussian amplitude 

distributions in epileptic seizures. The prevalence of 

Table 6. Subject-wise Performance Comparison of Individual and Hybrid models on the CHB-MIT Dataset 

Patient ID Classifier Performance (%) 

Accuracy Precision F1-Score Sensitivity Specificity AUC 

CHB01 Transformer 98.97 100 98.92 97.87 100 99.96 

DenseNet121 97.94 97.87 97.87 97.87 98 98.29 

Hybrid 98.97 100 98.92 97.87 100 100 

CHB02 Transformer 95.08 87.5 90.32 93.33 95.65 97.75 

DenseNet121 100 100 100 100 100 100 

Hybrid 93.44 92.30 85.71 80 97.83 99.42 

CHB03 Transformer 95.69 97.43 95 92.68 98.07 99.62 

DenseNet121 100 100 100 100 100 100 

Hybrid 100 100 100 100 100 100 

CHB04 Transformer 94.82 100 80 66.67 100 97.95 

DenseNet121 96.55 100 87.5 77.78 100 99.77 

Hybrid 100 100 100 100 100 100 

CHB05 Transformer 98.14 100 98.03 96.15 100 100 

DenseNet121 100 100 100 100 100 100 

Hybrid 100 100 100 100 100 100 

CHB06 Transformer 98.96 100 98.92 97.87 100 100 

DenseNet121 96.90 100 96.70 93.61 100 99.57 

Hybrid 100 100 100 100 100 100 

CHB07 Transformer 100 100 100 100 100 100 

DenseNet121 100 100 100 100 100 100 

Hybrid 100 100 100 100 100 100 

CHB08 Transformer 93.79 93.40 94.97 96.59 89.47 97.15 

DenseNet121 100 100 100 100 100 100 

Hybrid 93.10 92.39 94.44 96.59 87.71 98.21 

CHB10 Transformer 97.94 97.87 97.87 97.87 98 99.70 

DenseNet121 100 100 100 100 100 100 

Hybrid 98.96 97.92 98.95 100 98 99.74 

CHB23 Transformer 98.59 94.74 97.29 100 98.11 100 

DenseNet121 100 100 100 100 100 100 

Hybrid 100 100 100 100 100 100 

CHB24 Transformer 98.83 100 98.41 96.87 100 99.59 

DenseNet121 96.51 91.42 95.52 100 94.44 99.82 

Hybrid 100 100 100 100 100 100 
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time-domain features over spectral-spatial features 

suggests that short-term temporal irregularities are more 

important than long-term frequency patterns for 

differentiating events of different sizes. This observation 

corroborates clinical EEG interpretation, in which seizure 

onset is more strongly determined by acute temporal 

features than by sustained spectral changes, supporting 

the conclusion that the developed feature set is both 

clinically interpretable and relevant.  

   In addition to visual and quantitative explainability 
mechanisms, the proposed model produces brief textual 
explanations based on the attention factors of the model. 
In particular, attention weights computed by the 
Transformer are pooled over feature dimensions and 
translated to hand-crafted EEG frequency bands (i.e., 
delta, theta, alpha,  beta, gamma). The relative 
contribution of individual bands is converted into 
percentages of the total attention, and the most 
dominant band is interpreted in a human 
comprehensible form (such as a strong influence on the 
theta band). These textual explanations are lightweight 
and automatically generated, aimed at giving clinicians 
attention visualizations and feature attributions based on 
SHAP. The quantitative explanation is formulated as 
scores computed from the transformer's attention 
weights and SHAP values. These values quantify the 
features that are important for seizure detection. 

   The SHAP technique is applied globally to the ANN 
classifier to assess how accurately its explanations 
represent the model’s decision process. The evaluation 
examines whether the features identified by SHAP 
actually influence the model’s decision. It was observed 
that the classification accuracy dropped significantly, 
from 99.14% to 58.20%, after removing the top 40% of 
features with the highest attribution scores, as 
identified by the SHAP XAI technique. The Perturbed 
Accuracy of 58.20% indicates that the model relies 
heavily on the removed features for seizure detection. 
Therefore, in our case, SHAP is faithful in analyzing 
feature importance and depicting the model’s behavior. 
Table 5 illustrates that SHAP achieves a Faithfulness 
score of 40.94% and a Completeness score of 1.00. 

D. Subject-Specific Performance Evaluation     

The model’s performance was evaluated on a single 
dataset across two settings: aggregated data across all 
subjects and subject-specific data. It is essential to 
assess the model’s performance on individual subjects, 
as seizure morphology, frequency patterns, and EEG 
characteristics vary substantially across individual 
subjects. While the proposed model was trained and 
evaluated on EEG recordings from 21 patients in the 
CHB-MIT dataset, Table 6 reports subject-wise 
performance for a subset of patients. We evaluated the 
individual models, Transformer, DenseNet121, and the 
Hybrid model, combining features from both models 
across different subjects. The results demonstrate that 
the proposed model can adapt to subject-specific 
variations in seizure patterns. The remaining subjects 
contribute to the overall performance metrics and 
exhibited comparable classification trends. Although 
the proposed hybrid model consistently performs 
competitively across subjects, its effectiveness is 
influenced by differences in individual EEG 
characteristics and data distributions. Further, the 
findings from the experimental evaluation are 
interpreted in the following section.  

 

IV. Discussion 

The proposed HTD-MXAI model aims to improve the 
performance of Deep Learning-based epileptic seizure 
detection while providing interpretability for the model’s 
detection. The experimental evaluation reveals that the 
hybrid approach using Transformer and DenseNet1 21 
for automated feature extraction, along with 
handcrafted features, improves the model’s 
performance in detecting seizures. Initial 
experimentation guides the selection of suitable DL 
models to achieve optimal performance. The results 
reveal that the components of HTD-MXAI ensure  

optimal, robust performance in detecting epileptic 
seizures. The significance of integrating these 
components is discussed here, highlighting their 
complementary roles in improving model performance 

Table 7. Comparative Performance of Transfer Learning-based Epileptic Seizure Detection Work on CHB-

MIT Dataset 

Authors Year Approach 
Performance (%) 

Accuracy Sensitivity Specificity 

A. A. Ein Shoka, et al., 
[14]  

2023 
Alexnet, Darknet19, 

GoogLenet, ResNet50, 
SqueezeNet 

86.11 88.89 - 

S. Pattnaik, et al., [15] 2024 ResNet50 95.23 99.54 90.28 

Proposed 2025 
Hybrid DenseNet121-

Transformer-ANN 
99.14 

 
98.49 

 
99.68 
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and interpretability.  The performance of the proposed 
HTD-MXAI is compared with several existing Epileptic 
Seizure Detection research studies [2, 14, 15, 21, 22, 
23, 24, 25, 26, 29, 37, 38, 41], including CNN-based 
pre-trained models, transformer models, hybrid 
models, and XAI-based models. All benchmark 
comparisons are reported using aggregated 
performance metrics across the evaluated subjects to 
enable a fair, high-level comparison with previously 
published CHB-MIT-based studies.  

Initially, the study employs a transfer-learning 
approach using CNN-based pre-trained models, such 
as MobileNetV2, EfficientNet-B0, and DenseNet121, to 
extract features from EEG data.  These models are 
trained on a large ImageNet dataset. Using a transfer-
learning approach, these models are fine-tuned on 
EEG data to extract features. Instead of training a 
model from scratch, the learned parameters on 
ImageNet are transferred to these models. It takes less 
time for training and can be used with scarce labelled 
data. This results in reduced computational cost and 
improved generalization on limited data. As 
demonstrated in Table 3 of the results section, 
DenseNet121 outperforms MobileNetV2 and 
EfficientNet-B0. It shows that MobileNetV2 and 
EfficientNet-B0 completely ignore the normal class. 
The 100% sensitivity indicates that these models 
cannot distinguish between non-seizure patterns and 
predict all samples as seizures, resulting in poor real-
world performance on the CHB-MIT dataset for seizure 
detection. In contrast, DenseNet121 demonstrated 
balanced performance and effectively classified 
seizure samples. Hence, we selected DenseNet121 
over MobileNetV2 and EfficientNet-B0 to capture deep 
spatial features from EEG data.  

      Table 7 presents a comparative analysis of the 
proposed HTD-MXAI model with existing studies that 
employ a transfer-learning-based approach for 
Epileptic Seizure Detection on the CHB-MIT dataset. 
The study reported by A. A. Ein Shoka et al. [14] 

evaluated multiple CNN-based pretrained models, 
such as AlexNet, Darknet19, GoogLeNet, ResNet50, 
and SqueezeNet. GoogLeNet outperformed other 
models, achieving moderate accuracy and sensitivity, 
thus indicating their limited ability to fully capture the 
complex seizure patterns. The recentstudy by S. 
Pattnaik et al. [15] employs transfer learning with a pre-
trained ResNet-50 model for seizure classification, 
using 2D scalograms as input. The study reports 
improved Sensitivity; however, specificity remains 
relatively low, suggesting potential false-positive 
detections. In contrast, the proposed hybrid 
Transformer-DenseNet121-ANN approach achieves 
the highest accuracy of 99.14% and specificity of 
99.68%, demonstrating a more balanced performance. 
It suggests that combining dense spatial features with 
Transformer-based temporal modeling is more 
effective than standalone pretrained models in 
capturing both local and long-range dependencies via 
transfer learning.  

The performance of the proposed HTD-MXAI model 

is compared with recent Transformer-based Epileptic 

Seizure Detection approaches on the CHB-MIT 

dataset, as depicted in Table 8. The studies by N. Ke 

et al. [21] and S. Rukhsar et al. [22] demonstrate that 

the convolutional transformers have a strong ability to 

capture the temporal dependencies among the EEG 

data, but with lower accuracy and sensitivity. Y. Ru et 

al. [23] combined CNNs with self-attention to improve 

the temporal modeling, but it resulted in reducing 

overall accuracy. In contrast, the effectiveness of the 

proposed hybrid Transformer-DenseNet121-ANN 

model in the epileptic seizure detection task is 

demonstrated by achieving the highest accuracy, 

Sensitivity, and Specificity of 99.14%, 98.49%, and 

99.68%, respectively. It indicates that joint modeling of 

rich spatial representations and long-range temporal 

dependencies improves seizure detection reliability.  

Table 8. Comparative Performance of Transformer-based Approaches for Epileptic Seizure Detection on 

CHB-MIT Dataset 

Author Year Approach 

Performance (%) 
 

Accuracy Sensitivity Specificity 

N. Ke., et al., [21] 2022  Convolutional Transformer 97.56 96.02 97.94 

S. Rukhsar, et al., [22] 2023   
Lightweight Convolution 

Transformer 
96.31 96.82 - 

Y. Ru, et al., [23] 2024 
CNN + Transformer Self-

attention 
92.89 96.17 92.99 

Proposed 2025 
Hybrid -Transformer- 
DenseNet121-ANN 

99.14 
  

98.49 
  

99.68 
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      Table 9 compares the performance of the proposed 

HTD-MXAI model with existing hybrid approaches 

applied for epileptic seizure detection on the CHB-MIT 

dataset. The prior studies combined CNNs with RNNs or 

utilized Graph-based learning. M. K. Alharthi et al. [2]  

applied CNN-BiLSTM with an attention mechanism to 

model the temporal dynamics of EEG and reported 

promising accuracy and sensitivity. T. Zhou et al. [24] 

employed a CNN with an LSTM to leverage sequential 

modeling and reported competitive accuracy and 

sensitivity. The proposed model shows improved 

accuracy and sensitivity, which may be attributed to the 

inclusion of Transformer-based global attention. J. Xu et 

al. [25] presented a GCN-BiGRU model to capture both 

spatial and temporal relationships among EEG data. 

While effective, its reported accuracy and specificity are 

lower than those of the proposed method. The difference 

observed in performance may be influenced by the 

architectural choice, where the study relies on a static 

graph structure and recurrent temporal modeling. In 

contrast, the proposed model applied Transformer-

based attention to effectively capture long-range 

dependencies. X. Dong et al. [26] combined temporal 

convolutions with Bi-LSTM to capture multiscale 

temporal patterns, resulting in balanced performance. 

The proposed model surpasses this approach by jointly 

modeling spatial, temporal, and long-range 

dependencies. The proposed approach achieves the 

highest accuracy, sensitivity, and specificity compared 

with existing hybrid approaches, suggesting that 

integrating deep feature extraction and Transformer 

attention improves seizure detection.  

 As demonstrated in the Results section, the 

integrated multimodal XAI approach effectively supports 

the interpretation of the model’s decision-making 

process by providing visual, textual, and quantitative 

explanations. The study aims to provide a quantitative 

evaluation of the XAI techniques to better assess their 

performance and address limitations in existing studies. 

As illustrated in Table 5, the faithfulness score of 40.94% 

indicates that removing the feature identified by SHAP 

as important to the model significantly reduces seizure 

classification performance, corroborating that the 

explanations align with the model's actual decision-

making behavior. In the context of seizure detection 

using EEG, such a loss in performance is clinically 

significant, as it indicates that the model is learning in a 

physiologically meaningful spectral-temporal manner 

rather than merely from spurious patterns. The 

completeness score of 1.00 provides additional 

evidence for clinical trust, because the total effect of all 

the SHAP attributions reconstructs the input-output 

relation of the model, in compliance with the 

completeness (local accuracy) axiom. Cumulatively, 

these findings indicate that the XAI framework elucidates 

sound and transparent rationales suitable for clinical 

decision support applications.  

   The robustness of the proposed multimodal 

explainability framework was empirically verified by 

qualitatively comparing explanation outputs  when the 

EEG was slightly perturbed, including small changes in 

amplitude and temporal delay. During these 

perturbations, we observed that the attention weights 

were still focusing on similar temporal locations, saliency 

maps were still highlighting similar discriminative time-

frequency patterns, and SHAP values maintained 

identical feature importance ranks. Such qualitative 

consistency across diverse explanation modalities 

suggests that the explanations do not strongly depend 

on small input perturbations, thereby reinforcing their 

robustness and supporting their potential use for reliable 

clinical decision-making.  

   The visual explanations produced by saliency maps 

and attention weights were qualitatively examined to 

assess their consistency with known neurophysiological 

characteristics of epileptic seizures. During seizure 

Table 9. Comparative Performance of Hybrid Approaches for Epileptic Seizure Detection on CHB-MIT 
Dataset 

 

Author 
  Year 

 

Approach 

                       Performance (%) 

Accuracy      Sensitivity Specificity  

M. K. Alharthi, et al., [2]   2022 CNN-Bi-LSTM-AM 96.87 96.85 - 

T. Zhou, et al., [24]   2023 CNN-LSTM 98.79 97 - 

J. Xu, et al., [25]   2024 GCN-BiGRU 97.35 98.85 95.83 

X. Dong, et al., [26]   2024 TCN-Bi-LSTM 97.09 94.13 97.13 

Proposed   2025 
Hybrid Transformer- 

DenseNet121-ANN 

99.14 

  

98.49 

 

99.68 
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segments, saliency maps tend to emphasize high-

energy time-frequency regions in the spectrograms, 

particularly within frequency bands commonly reported 

in clinical EEG literature during ictal activity, while 

attention weights focus on temporally localized 

segments surrounding seizure onset. Although this 

assessment is qualitative, the observed alignment with 

established EEG patterns suggests that the learned 

explanations are clinically reasonable. SHAP further 

provides feature-level analysis that supports this 

alignment by identifying higher-order moments, such as 

skewness. Together, the attention weights, saliency 

maps, and SHAP provide complementary explanations 

across the temporal, spectral, and feature levels.  

The performance of the proposed HTD-MXAI model 

is compared with the existing Explainable AI-based 

approaches. Table 10 presents a comparison of existing 

Explainable AI-based Approaches with the proposed 

HTD-MXAI model for Epileptic Seizure Detection on the 

CHB-MIT Dataset. Earlier studies, such as those by 

Mansour et al. [29] and Ding et al.[37], employ feature-

relevance analysis and SHAP-based explanations, but 

report comparatively lower classification performance. 

Other recent works, including Sánchez-Hernández et al. 

[38], primarily focus on qualitative interpretability while 

achieving modest detection accuracy. In contrast, 

Mazurek et al. [41]  incorporate attention mechanisms 

and GNN-based explanations, but do not explicitly 

assess the reliability of the generated explanations. The 

proposed HTD-MXAI model differs in that it combines 

strong detection performance with both qualitative and 

quantitative evaluation of explainability, including 

faithfulness and completeness measures. This 

comparative analysis suggests that the proposed 

approach offers a more balanced trade-off between 

predictive accuracy and interpretability.  

 The superior performance of the proposed HTD-

MXAI model can be attributed to the complementary 

strengths of its architectural components rather than a 

single design choice. The Transformer encoder can 

handle long-range temporal dependencies and global 

EEG dynamics, and DenseNet121 extracts localized 

spatial-spectral patterns from time-frequency 

representations. By combining automatically learned 

deep features with handcrafted time-frequency and 

spatial-domain features, the system's discrimination 

Table 10. Comparative Analysis of XAI-based Epileptic Seizure Detection on CHB-MIT Dataset 

 Author/ 
Year 

Performance (Classification Model) XAI Techniques Performance Metrics for XAI 

Acc 
(%) 

Sen 
(%) 

Spec 
(%) 

Precisi
on (%) 

F1-
Score 
(%) 

Visualization Qualitative Quantitative 

M. Mansour, 
et al., 2020, 

[29] 
97.04 

 
97.65 

 
95.58 95.40 - 

Feature 
Relevance 

Score 

Correlation 
between the 

Feature 
relevance 

 

Y. Ding et 
al.,2024, 

[37] 
95.31 92.42 95.32 - - SHAP 

Optimal 
Channel 

combination 
determination 

 

S. E. 
Sánchez-

Hernández, 
et al.,2024, 

[38] 

84 - - - - SHAP, LIME  
Spearman's 

rank correlation 
coefficient  

S. Mazurek, 
et al.,2024, 

[41] 
91.32 - - - 89.94 

Attention 
Mechanism, 

GNN Explainer 

Interpretation 
of EI and FI 

Scores 

Edge and 
Feature 

Importance 
Score 

 

Proposed 99.14 98.49 99.68 99.62 99.05 

Attention 
Weights, 
Saliency 

Maps, SHAP 

Feature 
Importance 

 

Faithfulness: 
40.94% 

Completeness 
1.00 

 

Note:  (‘ - ' indicates that the values are not reported in the reference study.) 
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performance is improved by retaining clinically 

meaningful signal properties that may not be fully 

captured by deep models alone. Furthermore, the intra-

modal multimodality input enables the model to jointly 

capture temporal, spectral, and spatial cues that 

contribute to more robust and generalizable seizure 

representations as compared to unimodal or single-

architecture approaches. The proposed model offers 

multimodal explainability by providing visual, textual, and 

quantitative explanations of the model's decision-making 

process. 

In addition to aggregated evaluation, subject-specific 

performance metrics are reported to analyze inter-

patient variability and robustness of the proposed model.  

As presented in Table 6, the proposed hybrid 

architecture consistently improves or stabilizes 

performance across most subjects, compared with the 

individual Transformer and DenseNet121 models. For 

subjects, e.g., CHB01, CHB03, CHB04, CHB05, 

CHB06, CHB07, CHB23, and CHB24, the hybrid model 

achieved perfect to near-perfect performance, 

suggesting the model’s ability to capture spatial-

temporal representation effectively. In contrast, CHB02 

and CHB08 are more challenging cases, in which the 

hybrid model achieved lower accuracy and F1-score 

than DenseNet121. This indicates that seizure 

manifestations may be more heterogeneous or subtle in 

these subjects.  These observations highlight the need 

for subject-level evaluation to better understand the 

model behavior.  

Despite the model demonstrating promising results, 

the following limitations should be acknowledged. First, 

its effectiveness has not yet been validated across a 

sufficiently diverse patient population, which is essential 

before considering clinical deployment. Second, the 

post-hoc integration of explainable AI (XAI) methods, 

while valuable for interpretability, may introduce 

additional computational overhead and increase system 

latency. In particular, SHAP-based feature attribution 

incurs a higher computational cost because the additive 

nature of Shapley value estimation requires repeated 

model evaluations to approximate each feature's 

contribution. Also, attention visualization and saliency 

map generation require extra forward and backward 

passes. Although post hoc XAI techniques are applied, 

they are not executed continuously during real-time 

inference. They increase analysis latency and memory 

usage during explanation generation, highlighting a 

trade-off between interpretability and computational 

efficiency. Future work will focus on optimizing 

explanation pipelines and benchmarking inference-

explanation latency to assess feasibility in strict real-time 

clinical settings. Ethical considerations related to XAI are 

important, considering the clinical implications of 

epileptic seizure detection. Biases present in the training 

data, such as patient imbalance, recording conditions, or 

seizure subtype representation, may influence both 

model predictions and their explanations, potentially 

leading to misleading interpretations. While the 

proposed XAI methods improve transparency, they do 

not inherently eliminate such biases. Future work should 

therefore include bias-aware training strategies and 

diverse clinical datasets to ensure that explanations 

remain reliable, clinically meaningful, and safe for real-

world deployment.   

 

V. Conclusion 

The study aimed to develop a multimodal, explainable 
approach for detecting epileptic seizures. The proposed 
model leverages advanced deep learning architectures, 
such as Transformers and DenseNet121, to achieve 
superior performance compared with existing 
approaches. The model achieved an overall 
(aggregated across subjects) accuracy of 99.14%, a 
sensitivity of 98.49%, and a specificity of 99.68%, 
outperforming the state-of-the-art models. High 
sensitivity and specificity are of paramount importance 
in medical applications because they ensure accurate 
identification of true clinical conditions while minimizing 
false diagnoses, thereby supporting safe and effective 
patient care. The integration of XAI techniques 
enhances model transparency, offering insight into 
decision-making through visual, textual, and quantitative 
explanations. The application of SHAP further enables 
detailed feature-importance analysis, which may be 
used for potential feature reduction and refinement. 
These interpretability mechanisms aim to improve 
clinical trust and facilitate broader acceptance among 
healthcare professionals. Future work will focus on real-
time diagnosis using large-scale, diverse datasets.   
Additionally, the research will be extended to develop an 
explainable predictive model for forecasting epileptic 
seizures, contributing further to proactive clinical 
decision support. 
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