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Abstract Autism spectrum disorder is a neurodevelopmental condition that affects social communication
and behaviour, and diagnosis still relies on subjective behavioural assessment. Electroencephalography
provides a noninvasive view of brain activity but is noisy and often analysed with handcrafted features or
evaluation schemes that risk data leakage. This study proposes a deep learning pipeline that combines
wavelet denoising, EEG-to-image encoding, and heavy-light decision fusion for autism detection from EEG.
Sixteen-channel EEG from children and adolescents with autism and typically developing peers in the KAU
dataset is denoised using discrete wavelet transform shrinkage, segmented into fixed 4 second windows,
and rendered as pseudo colour heatmaps. These images are used to fine-tune five ImageNet pretrained
architectures under a unified training protocol with 5-fold cross-validation. Heavy-light fusion combines
one heavyweight backbone and one lightweight backbone through weighted soft voting on class posterior
probabilities. The strongest single model, ConvNeXt Tiny, attains about 97.25 percent accuracy and 97.10
percent F1 score at the window level. The best heavy light pair, ConvNeXt plus ShuffleNet, reaches about
99.56 percent accuracy and 99.53 percent F1, with sensitivity and specificity in the 99 percent range. Fusion
mainly reduces missed ASD windows without increasing false alarms, indicating complementary error
patterns between heavy and light models. These findings show that the proposed denoise encode classify
pipeline with heavy light fusion yields more robust autism EEG classification than individual backbones
and can support EEG-based decision support in autism screening.

Keywords Electroencephalography; Autism Spectrum Disorder; Wavelet Denoising; Heatmap; Deep
Learning; Decision Fusion.

l. Introduction

Autism spectrum disorder (ASD) is a heterogeneous
neurodevelopmental condition that affects social
communication, behaviour, and sensory processing
across the lifespan. Clinical diagnosis still relies

interest in objective, physiology-based markers that
can support earlier, more consistent, and scalable
detection and follow-up. Electroencephalography
(EEG) offers a noninvasive, high-temporal-resolution
window into brain dynamics and has become a key

primarily on behavioural assessment, which is time-
consuming and inherently subjective, often leading to
inter-clinician variability and delayed identification,
particularly during early childhood when symptoms
may be subtle or atypical. These limitations are further
exacerbated in resource-limited settings with restricted
access to specialised clinicians, motivating a strong

modality for biomarker research in psychiatry and
developmental neuroscience [1], [2]. Recent reviews
show that EEG-derived measures, including oscillatory
power, complexity, and connectivity, can distinguish
ASD from typically developing cohorts and can be used
as input to machine learning systems for computer-
aided diagnosis [2], [3], [4], [5].
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Raw EEG signals, however, have a low signal-to-
noise ratio and are highly nonstationary. Muscle
activity, eye movements, and environmental
interference can obscure subtle neurophysiological
patterns  relevant to  classification. Robust
preprocessing is therefore essential before modelling
[6]. Wavelet-based denoising with the discrete wavelet
transform (DWT) provides joint time and frequency
localisation and a multiresolution decomposition that
matches both fast transients and slow rhythms. Survey
papers and application studies report that wavelet
shrinkage can effectively reduce ocular and muscle
artefacts and power line interference while preserving
clinically important morphology [7], [8], [9], [10]. In ASD
EEG studies, wavelet domain pipelines such as DWT
and stationary wavelet transform combined with linear
discriminants or support vector machines have already
demonstrated reliable case control separation,
especially in paediatric cohorts [11], [12], [13].

Alongside denoising, evaluation protocols have a
major impact on reported performance. Several deep
learning papers on psychiatric EEG datasets have
highlighted that segment-wise cross-validation can
easily cause data leakage when windows from the
same subject are split across training and test folds,
leading to overly optimistic performance estimates [14],
[15]. This concern is particularly pronounced in studies
based on small subject cohorts, where limited sample
diversity poses additional challenges for model
generalizability. Recent work also shows that choices
in filtering, referencing, and artefact handling can
substantially change decoding accuracy, underscoring
the need for transparent, leakage-aware preprocessing
and subject-wise validation in EEG-based classification
[16].

To exploit mature computer vision models, an
emerging line of work converts preprocessed EEG into
two-dimensional image representations, such as
topographic maps, spatio spectral feature images, and
connectivity maps [3], [17], [18], [19], [20]. These EEG
to image encodings allow convolutional neural
networks and transformer-based architectures to
capture local patterns within channels and global
relationships across channels in a single structured
input, and they have achieved strong performance in
several neuropsychiatric and neurodegenerative
applications [17], [18], [19], [20]. Among these
representations, channel-by-time heatmaps preserve
the temporal evolution of each EEG channel within
fixed windows while maintaining a consistent inter-
channel ordering, enabling joint modelling of temporal
dynamics and cross-channel relationships. Compared
with topographic maps or spatio-spectral and
connectivity images, this representation avoids
additional feature engineering and provides a more

direct and interpretable spatial-temporal structure for
window-based ASD EEG analysis [21].

In parallel, modern computer vision backbones have
evolved along two directions. Heavyweight networks
such as ConvNeXt and transformer-based models offer
high representational capacity at the cost of memory
and computation, while lightweight architectures such
as EfficientNet B0, GooglLeNet, and ShuffleNet are
designed for deployment on constrained devices [22],
[23], [24], [25]. Ensemble and decision fusion strategies
that combine heterogeneous learners at the probability
level have been shown to improve accuracy and
stability in biomedical signal and medical image
classification without major changes to the underlying
models [26], [27], [28], [29], [30], [31], [32]. Building on
this, combining one heavyweight and one lightweight
model is hypothesised to exploit complementary
characteristics, where the heavy model captures
complex spatial-temporal patterns while the light
model enhances robustness and efficiency, yielding
improved performance without the full cost of heavy-
only ensembles [26], [28].

Despite these advances, several limitations remain
in current ASD EEG classification studies. Many
wavelet-based pipelines rely on handcrafted features
and a single shallow classifier, without assessing how
different modern deep backbones behave on the same
preprocessed data [11], [12], [13]. Deep learning
approaches that operate on spectrograms or
connectivity maps often use segment-level validation,
which risks subject leakage and may overestimate
performance on small datasets [4], [14], [15], [32].
Furthermore, the combined effect of wavelet denoising,
non-spectral channel by time heatmap encoding, and
heavy light model fusion under strictly subject-wise
cross-validation on the widely used KAU ASD EEG
dataset has not yet been systematically evaluated.

Based on the above observations, this study aims to
directly address key methodological limitations in
existing ASD EEG classification research, including the
reliance on handcrafted features and shallow
classifiers, the use of spectral or connectivity-driven
representations that require additional modelling
assumptions, and the risk of subject-level data leakage
due to segment-wise evaluation. To this end, we
develop and evaluate a leakage-aware EEG-to-
heatmap pipeline that integrates wavelet-based
denoising, non-spectral channel-by-time encoding,
modern deep vision backbones, and heavy—light
decision fusion under strictly subject-wise cross-
validation. The main contributions of this work can be
summarised as follows:

1) We propose an end-to-end pipeline that converts
raw multi-channel EEG into denoised, fixed-length
segments and subsequently into non-spectral
channel-by-time heatmaps, thereby avoiding
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Fig. 1. Overview of the proposed EEG to heatmap ASD classification framework.

handcrafted feature extraction and frequency-
domain assumptions commonly used in
spectrogram- or connectivity-based approaches,
while preserving interpretable spatial-temporal
patterns across channels.

We design a heavy-light decision-level fusion
scheme that explicitly combines models with
complementary capacities, addressing the
limitations of single shallow classifiers and
homogeneous ensembles by leveraging both
high-capacity = representation learning and
robustness from lightweight architectures under a
unified inference framework.

We adopt a strictly subject-wise cross-validation
protocol with leakage-aware preprocessing to
directly mitigate the risk of data leakage
associated with segment-level validation, and we
report clinically relevant performance metrics
together with confusion matrices and statistical
significance tests.

We provide empirical evidence that the proposed
combination of wavelet-based denoising, non-
spectral EEG-to-heatmap encoding, and heavy—
light fusion vyields more robust ASD EEG
classification than individual backbones, while
achieving a favourable trade-off between

classification performance and computational
cost.

An overview of the proposed EEG to heatmap ASD
classification framework is illustrated in Fig. 1. Raw 16-
channel EEG from the KAU dataset is denoised with
DWT, segmented into overlapping 4-second windows,
converted into channel-by-time heatmaps, and then
processed by heavy and light vision backbones whose
outputs are combined through decision-level fusion.
The rest of this paper is organised as follows. Section
2 describes the dataset, EEG preprocessing, and
heatmap generation. Section 3 details the selected
heavy- and light-vision backbones and the decision-
fusion strategy. Section 4 presents the experimental
setup and results. Section 5 discusses the findings,
practical implications, and limitations. Section 6
concludes the paper and outlines directions for future
research.

Il. Materials and Methods

A. Dataset

This study analyzes a public EEG dataset provided by
King Abdulaziz University (KAU), Jeddah, Saudi
Arabia, comprising recordings from 16 subjects, 8
children with ASD and 8 typically developing controls,
distributed as 16 recordings by 16 channels in BCI2000
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.dat format [33]. Each sample contains the standard 10
20 montage (Fp1, F3, F7, T3, T5, O1, C4, Fp2, Fz, F4,
F8, C3, Cz, Pz, Oz, O2). We retained the full 16-
channel layout to bilaterally sample frontal, temporal,
central, parietal, and occipital regions that are
frequently implicated in ASD, consistent with prior EEG
findings of atypical frontal and fronto-posterior
coherence and altered spectral power profiles,
including reduced alpha, relative increases in theta and
beta, and reports of elevated high-frequency activity
[34], [35], [36]. The same KAU cohort has also been
used in recent wavelet-based ASD studies, for example
stationary wavelet transform combined with Fisher
linear discriminant analysis, which facilitates
methodological comparability with our protocol [13].

All personal identifiers are absent in the public
release. Group membership is provided at the subject
level (ASD versus control) without per-event clinical
markers or ASD subtyping. The cohort includes eight
ASD participants (five males and three females, ages 6
to 20 years, total 4,104.2 seconds of EEG) and eight
controls (all males, ages 9 to 13 years, total 4,534.9
seconds). Group labels were assigned by the KAU
Hospital clinical team and are used here as ground
truth. The public description does not specify the
diagnostic instruments that were used, such as ADOS,
ADI-R, or DSM 5, which we acknowledge as a limitation
of the source data [33].

Recordings were acquired in a relaxed state using
Ag/AgCl electrodes with a g.tec EEG device and a USB
amplifier under BCI12000, sampled at 256 Hz, with an
acquisition bandpass of 0.1 to 60 Hz and a 60 Hz notch
filter. The original study reports that annotations were
performed by qualified clinical staff following KAU
Hospital standard diagnostic procedures for ASD, that
written informed consent was obtained from all
participants or their legal guardians prior to acquisition,
and that all data were fully anonymised before public
release, under approval from the KAU Ethics
Committee. Dataset access requests can be directed
to the data custodian listed in the original publication.
The present work involves only secondary analysis,
with no new data collection or direct contact with
human participants, and therefore adheres to the
ethical framework described in [33].

B. Discrete Wavelet Transform (DWT)

Electroencephalography (EEG) signals are
characteristically low signal-to-noise ratio and
nonstationary, so robust denoising is essential to
preserve diagnostically relevant structure before
modelling [6]. In this work, we adopt discrete wavelet
transform (DWT) denoising, which provides joint time-
frequency localisation and a natural multiresolution
analysis that matches transient EEG bursts and slow
rhythms. Compared with fixed resolution Fourier
filtering, DWT separates transient components into

scale-localised detail coefficients while concentrating
slower neural oscillations into coarse approximations,
enabling selective suppression of artefacts without
smearing neurophysiological content. Contemporary
reviews and application studies report that wavelet-
based shrinkage can effectively suppress ocular and
muscle artefacts and line noise while maintaining the
morphology of neural rhythms, and they highlight
wavelet-based denoising as a staple in modern EEG
pipelines [7], [8], [9], [10].

Prior to wavelet-based denoising, raw EEG signals
were subjected to standard band-pass filtering to
suppress baseline drift and high-frequency noise
outside the physiological EEG range. No additional
notch filtering was applied, as power-line interference
was not prominent in the recorded data. Discrete
wavelet transform (DWT) shrinkage was then applied
to further reduce noise, followed by fixed-length
window segmentation. For a discrete-time EEG
channel, the three-level DWT decomposes the signal
into an approximation and detail component, as
expressed in Eq. (1).

x[n] = 4;[n] + ¥}_, D;[n] (1)
where D;[n] captures oscillatory activity in a dyadic
sub-band and 4, [n] contains the slower baseline trend
[29]. Let d;, denote the wavelet coefficient at level j

and time index k. Soft thresholding updates each
coefficient according to Eq. (2).

dj,k = Sign(d]-,k) max (|dj,k| - ){],0) (2)
with 4; chosen either by the universal threshold or by
the BayesShrink rule described below. In this way,
coefficients with small magnitude, which are likely
dominated by noise, are shrunk towards zero, whereas
large coefficients that carry neural information are
preserved. We adopt an orthogonal db4 mother
wavelet owing to its compact support and smooth
Daubechies-style regularity, which promotes sparse
representations of EEG bursts and edges while
avoiding excessive ringing. Comparative studies on
EEG denoising consistently report db4 and related
families among the strongest choices for balancing
fidelity and smoothness, providing a favourable
accuracy to complexity trade-off [37].

DWT shrinkage was performed using a db4 wavelet
with three decomposition levels. Three levels were
selected to adequately capture the dominant EEG
frequency bands while avoiding over-decomposition
that may distort physiologically relevant signal
components [7], [8], [9], [10]. For each 16-channel
segment, a three-level Mallat decomposition is applied,
yielding approximation and detail subbands
{A3,D3,D,,D,}. Under a sampling rate of 256 Hz and
ideal half-band splitting, these levels roughly
correspond to very high frequency activity dominated
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by muscle artefacts in D;, higher beta and low gamma
activity in D,, alpha and low beta rhythms in D3, and
slower delta to theta activity in A;. Exact passbands
depend on the analysis filters, but this octave structure
is standard in EEG wavelet analyses [29]. The three-
level filter bank and the flow from the raw signal to the
approximation and detail subbands are illustrated
schematically in Fig. 2. Noise attenuation operates by
soft-thresholding the detail coefficients at each level, a
well-established approach that shrinks small-
magnitude coefficients dominated by noise more than
large coefficients that likely carry signal. In classical
wavelet shrinkage, the universal threshold 1 is defined

as given in Eq. (3) [38].

A=o0,/2logN (3)

where N is the number of samples in the subband and
o is a robust noise estimate computed from the median
absolute deviation of the finest scale details divided by
0.6745. BayesShrink refines this idea by adapting A per
subband using a generalised Gaussian prior, often
improving the bias-variance trade-off [39]. In our
implementation, ¢ is estimated from D; and soft
thresholds are applied separately at each level. When
BayesShrink is enabled, ssubband-specificthresholds
are used; otherwise, a fixed universal threshold is
applied across D, to D5. The inverse DWT reconstructs
denoised channels from A; and the thresholded details
{Ds,D,,D,}. Qualitatively, DWT denoising reduces
high-frequency fluctuations while preserving slower
neural rhythms; this can be seen by comparing the raw
and denoised 16-channel windows in Fig. 3(a) and Fig.
3(b), plotted with identical amplitude scales. Practically,
artefacts with strong high-frequency content (muscle,
abrupt motion) are attenuated mainly in D; and D,,
while slow ocular drifts and baseline wander contribute
less to thresholded details after the acquisition band
limits, so DWT complements the fixed front-end filters
by adaptively suppressing bursty contaminants in a

scale-aware manner. EEG workflows that integrate
wavelet denoising in this way have been shown to
improve downstream classification and regression (for
example, depth of anaesthesia indices) without
compromising temporal precision [40].

©
=
2
w
(O]
L
w

D1 , (D)

Fig. 2. DWT process overview. A three level Mallat
tree decomposes each channel into approximation
and detail coefficients.

C. Windowing

After denoising with DWT, each 16-channel EEG
recording at 256 Hz is segmented into fixed 4-second
windows with 50 percent overlap, corresponding to
1,024 samples per window and a hop of 512 samples.
The choice of a 4-second window provides a balance
between temporal resolution and contextual coverage,
allowing multiple cycles of dominant EEG rhythms (e.g.,
theta, alpha, and beta bands) to be captured within each
segment while maintaining quasi-stationarity. A 50%
overlap is employed to increase the effective number of
training samples and ensure smooth transitions between
adjacent windows, while limiting excessive redundancy
between segments. This window length balances
temporal context, capturing multiple cycles of low-
frequency rhythms, with a sufficient number of training
instances, a trade-off that is commonly adopted in recent
EEG classification pipelines. Fig. 4 illustrates the
windowing process, where each window overlaps the

DWT EEG Signal

Fig. 3. EEG before and after DWT denoising. (a) Raw 16 channel window; (b) DWT denoised window

after soft thresholding.
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Fig. 4. Windowing of EEG signal with 50 percent overlap.

next by 50 percent to maintain continuity while
increasing the number of training samples. A recent Q1
study explicitly selected 4-second windows with 50
percent overlap to ensure continuity while maintaining
adequate sample counts for deep models [41].
Controlled comparisons also show that overlap-based
segmentation can increase accuracy relative to non-
overlapped baselines, improving training efficiency and
robustness in EEG applications [42].

Let x.[n] denote the denoised discrete-time EEG
signal of channel ¢ sampled at F;, = 256 Hz. We set the
window length to L = 4F; = 1,024 samples and the hop
sizeto H = % = 512 samples for a 50 percent overlap.
For a recording of length Ny samples from the subject s,
the m-th window covers indices defined in Eq. (4), with
the total number of windows determined by Eq. (5).

n=mHmH+1,...mH+L—-1, 4)
M, =[]+ 1 (5)
The corresponding multi-channel window is

represented as a matrix X,™ € RSt with € = 16
channels, as defined in Eq. (6).
X, ™(c,i)=x[mH+il,c=1,..16,i =0,..,L — 1.
(6)
This construction yields a fixed-size tensor for each
window that can be directly passed to the subsequent
heatmap rendering and deep learning stages. For each
subject, we construct a windowed tensor by stacking all
channels over each 4-second interval. Any trailing
fragment shorter than 4 seconds is discarded to maintain
consistent window shapes. In practice, segmentation is
implemented by array slicing on the denoised time series
with a stride of 512 samples, which efficiently realises
overlapping windows with minimal computational
overhead. To assess generalisation performance, we
use 5-fold cross-validation. The data are partitioned into
five folds, and in each run, four folds are used for training
and the remaining fold for testing. This practice avoids

using the same samples for both training and evaluation,
which can lead to overly optimistic performance
estimates if not controlled properly [15].

D. Heatmap Rendering

Given a denoised EEG segment X € R“*T with € = 16
channels and L = 1,024 time samples, we render a
pseudo colour heatmap by mapping time samples to the
horizontal axis and channels to the vertical axis, then
applying a standardised colour scale. This direct
amplitude-to-colour approach follows recent ASD EEG
work that converts windowed EEG into heatmaps for
vision backbones [21]. Fig. 5 illustrates the signal-to-
heatmap pipeline.

Channels are arranged in rows according to the same
10 20 montage described in Section Il A, so that the
ordering preserves coarse bilateral and topographic
structure across frontal, temporal, central, parietal, and
occipital regions [29], [37], [38]. Specifically, the 16 EEG
channels are arranged along the vertical axis in a fixed
and reproducible order following the standard 10-20
electrode naming convention (e.g., Fp1, Fp2, F7, F3, Fz,
F4, F8, T7, C3, Cz, C4, T8, P7, P3, P4, P8), and this
ordering is kept consistent across all subjects and
windows. Although no spatial interpolation is performed,
this anatomically informed ordering preserves coarse
anterior—posterior and left—right relationships that can be
exploited by convolutional neural networks. Each row
linearly samples the corresponding channel waveform
across the 4-second window, and columns correspond
to uniformly spaced time bins. This yields a fixed-
channel-by-time representation suitable for downstream
vision backbones such as ConvNeXt, Swin, EfficientNet
B0, GooglLeNet, and ShuffleNet [17]. To ensure
comparability across images and avoid information
leakage, colour limits v,,;,, and v,,,, are computed only
from the training fold, either globally or per channel as
specified a priori, and then applied unchanged to
validation and test windows in that fold. Given an entry
X(c, t), the amplitude is first clipped to the predefined
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Fig. 5. Signal to heatmap pipeline. DWT denoised EEG windows are mapped to channel by time matrices,
normalised using training derived colour limits, and rendered as pseudo colour heatmaps that preserve
the channel order across rows and the temporal evolution along columns.

range according to Eq. (7) and subsequently normalised
to the interval [0,1] using Eq. (8).

)?(C: t) = min(max(X(c,t), Vmin) » Vmax)» (7)

7 X(,)~Vmin

X(C’ t) - Ymax~Vmin (8)

The normalised matrix X € [0,1]¢** is finally mapped
to image intensities via a perceptually uniform colormap
g:10,1] - [0,1]3, so that each pixel has an RGB triplet
I(c,t) = g(X(c,t)). A perceptually ordered pseudo-
colour mapping was applied using the jet colormap
implemented in Matplotlib, where low amplitudes are
encoded in blue tones and high amplitudes in yellow—
red tones. This choice builds on our prior ASD EEG
heatmap work and facilitates the visual interpretation of
amplitude variations across channels and time [21].
Fold-wise standardisation in terms of v,,;, and v,
stabilises learning and prevents target information from
seeping into preprocessing, and consistent EEG to
image encodings have been reported to improve deep
model reliability [17], [18].

As a concrete example, Fig. 5 shows the conversion
of a single 4-second, 16-channel EEG window into a
channel-by-time heatmap. The waveform panel (“DWT
EEG Signal”) displays the denoised multichannel
segment arranged in 10 20 orders, while the “Heatmap
Image” panel shows the corresponding pseudo colour
representation obtained by mapping each channel to a
row with global colour limits estimated from training data
only. Columns encode time samples, and rows encode
channels, producing a fixed canvas that maintains inter-
channel relationships while exposing temporal patterns
in a form that is convenient for image models [17], [18].

For compatibility with standard computer vision
backbones pre-trained on ImageNet, the single-channel
heatmap is replicated across three channels to form an
RGB image and resized to the backbone input resolution

(for example, 224 by 224 pixels) using antialiased
interpolation [20], [22], [24]. We apply conservative
augmentations that preserve the temporal and spectral
structure of the signal, such as slight brightness and
contrast jitter and small cutout, and avoid strong
geometric warps that could distort time or frequency
content. This aligns with recent literature showing that
image like EEG encodings, including heatmaps,
topographic maps, and connectivity maps, are effective
inputs for convolutional and transformer-based
classifiers [17], [18], [43], [44]. After rendering, the RGB
heatmaps serve as inputs for the heavy and light vision
backbones described in the following section.

E. Deep Learning Architectures

The proposed framework uses five pretrained deep
learning architectures that are adapted to the channel-
by-time EEG heatmaps: one heavyweight convolutional
model (ConvNeXt Tiny), one heavyweight transformer-
style model (Swin Transformer Tiny), and three
lightweight convolutional networks (EfficientNet BO,
GooglLeNet, and ShuffleNetV2 0.5x). Rather than
proposing a new architecture from scratch, the present
work focuses on how these complementary inductive
biases behave on a unified EEG to heatmap pipeline and
how heavy light decision fusion can exploit their
differences under strict cross-validation [22], [23], [24],
[25], [26].

All architectures receive the same type of input:
224 x 224 RGB images obtained from 4-second
windows as described before. Conceptually, the
horizontal axis encodes time and the vertical axis
encodes ordered EEG channels, so that convolutional
kernels or local attention windows can jointly capture
intra-channel temporal patterns and inter-channel
interactions. By keeping the input representation fixed
and normalising the classifier heads, we attribute
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Table 1. CNN backbones and classifier heads used in this study.

Layer Laver Tvpe Size Output
Number verve EfficientNet-B0 | GoogleNet | ShuffleNetV2 | ConvNeXt

0 Input layer 224 X224 X3

1 State-of-the-art 7 % 7 x 1280 7X7%1024 | 7x7%x1024 | 7x7x 768
convolution layers

Global average

2 pooling (GAP) 1280 1024 1024 768
Dense layer (256,

3 ReLU) 256

4 Fully connected layer 2

differences in performance primarily to the architectures
and their interaction with the EEG-specific image
structure, rather than to arbitrary changes in
downstream layers.

1. Convolutional backbones and inductive bias for
EEG heatmaps

We adopt four convolutional families to span a range of
model capacities and computational costs.

a) EfficientNet BO uses depthwise separable MBConv
blocks with squeeze and excitaton and a
compound scaling rule. Small 3 x 3 kernels in early
layers primarily capture local temporal changes
within channels and short-range correlations
between neighbouring rows in the heatmap, while
deeper layers aggregate progressively larger
temporal contexts. Prior work has reported strong
performance of EfficientNet BO in EEG based
seizure detection and other biomedical signal
classification tasks [25].

b) GooglLeNet (Inception v1) employs multi branch
Inception modules where 1 x 1, 3 x3, and 5x5
filters operate in parallel. On channel by time
heatmaps, these branches can be interpreted as
capturing short temporal edges (1 x 1 and 3 x 3)
and broader temporal structures spanning multiple
cycles of low frequency oscillations (5 x 5), while
the across row dimension implicitly encodes
interactions between nearby electrodes. The multi
scale design is thus well aligned with the multiscale
nature of EEG rhythms and artefacts [22], [23].

c) ShuffleNetV2 0.5x is a highly efficient architecture
built from channel split, channel shuffle, and
depthwise separable convolutions. The channel
shuffle operation encourages information mixing
across feature groups, which is important when
each feature channel corresponds to combinations
of EEG channels and time. Because of its small
parameter count and low multiply accumulate
operations, ShuffleNetV2 is an attractive candidate
for resource constrained ASD screening devices
that require near real time inference [24].

d) ConvNeXt Tiny modernises the ResNet style
design with large kernel depthwise convolutions
(7 x 7), inverted bottlenecks, and simplified stage
wise downsampling [25], [26]. Large depthwise
kernels along the time axis allow ConvNeXt to
integrate information over longer temporal horizons
at relatively shallow depths, which can be beneficial
for detecting slower oscillatory trends and cross-
channel patterns. In preliminary experiments,
ConvNeXt consistently ranked among the
strongest heavy backbones on ASD heatmaps in
terms of F1 score, underscoring its role as a
primary heavy model in the fusion stage.

In all convolutional cases, we retain the ImageNet
pretrained stem and block structure and replace the
original classification layer with a lightweight EEG-
specific head. The terminal feature map is processed by
global average pooling, followed by a 256 unit fully
connected layer with ReLU activation and dropout
(dropout rate in {0.2, 0.3} selected once on the validation
folds and then fixed across models), and finally by a fully
connected layer with two output logits (ASD and TD).
This shared head design, summarised in Table 1 and
Fig. 6, standardises classifier capacity across
architectures and facilitates fair comparison and fusion.

2. Swin Transformer Tiny for structured EEG images

To complement the convolutional encoders, we include
Swin Transformer Tiny as a hierarchical transformer-
style backbone for EEG heatmaps [18], [22], [23]. The
modified Swin-based classifier used in this work is
summarised in Fig. 7. Swin first divides the 224 x 224
RGB image into non-overlapping patches (for example
4 x 4 pixels), projects each patch into a low-dimensional
embedding, and then applies multi-head self-attention
within fixed-size windows (for example 7 x 7 patches).
Between stages, windows are shifted and patches are
merged, creating a pyramid of feature maps with
decreasing spatial resolution and increasing channel
depth. On channel-by-time heatmaps, local attention
windows cover short temporal spans and small groups
of neighbouring channels, allowing Swin to adaptively
weight interactions between electrodes across time
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Fig. 6. Modified convolutional neural network (CNN) architectures used in this study.

without the rigid locality of convolutional kernels. The
shifted window mechanism then enables information
flow across adjacent temporal blocks and channel bands
while keeping computational cost subquadratic in the
number of patches. The final stage feature map is
pooled to obtain a 768 dimensional representation,
which is fed to a fully connected layer with two output
units. As with the convolutional models, we start from
ImageNet pretrained weights and fine-tune the entire
network on the ASD EEG heatmaps.

3. Training protocol and hyperparameter selection

To address concerns about fairness and replicability in
comparative deep learning studies, all five architectures
are trained under a unified protocol with minimal,
explicitly documented hyperparameter tuning [14], [15],
[29]. For each cross-validation fold:

a) Inputs are 224 x 224 RGB heatmaps standardised
using fold-specific training statistics.

We use the AdamW optimizer with an initial learning
rate in {1e — 4, 3e — 4} and weight decay 1e — 4. A
cosine learing rate schedule with linear warmup
over the first five epochs is applied. The learning
rate setting is selected once on validation folds for
a reference architecture, then reused unchanged
for the others.

b)

c) Mini batches contain 32 heatmaps, drawn by
sampling windows uniformly from the training
subjects. To reduce class imbalance at the window
level, ASD and TD windows are oversampled so
that mini-batches are approximately balanced.
Training is run for up to 80 epochs with early
stopping based on validation F1 score, with a
patience of 10 epochs. The model state that
achieves the highest validation F1 is used for
evaluation on the held out test fold.

Random seeds for weight initialisation and data
shuffling are fixed and reported so that the
experiments are reproducible.

No model-specific tricks such as custom learning rate
schedules, auxiliary heads, or aggressive data
augmentation are employed. This design choice
intentionally trades off some potential peak performance
for transparency k comparability: all architectures are
exposed to the same optimisation regime, data
preprocessing, and stopping criteria, enabling
interpretation of differences in ASD detection
performance in terms of architectural biases rather than
idiosyncratic training recipes.

F. Decision Level Fusion

e)

Input ‘ | Transformer Layer ‘ | Modified FC Layer ‘ ‘ Output ‘
State-of-the-art Transformer

Full ASD

Input Layer — ~ Layer: [CLS]/GAP Connegted
Vision Transformer Selection Ve | a| ™

Swin Transformer y
; Weight
| Weight | Initialization:
glorot uniform

T [ Optimizer

Fig. 7. Modified transformer-based architecture used in this study.
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To balance accuracy and efficiency while exploiting
complementary inductive biases, we integrate one
heavyweight architecture with one lightweight
architecture at the decision level using weighted soft
voting, a strategy that has been widely adopted in
biomedical ensemble learning [26], [27], [28]. Let P{ (x)
denote the posterior probability for class k € {ASD,TD}
produced by a heavyweight model given an input
heatmap x, and let P{(x) denote the corresponding
posterior produced by a lightweight model. The fused
posterior probability is then obtained via weighted soft
voting, as defined in Eq. (9), where the fusion weight a €
[0,1] controls the relative contribution of the heavyweight
and lightweight branches. The final class label is
determined by selecting the class with the maximum
fused posterior probability, as given in Eq. (10).
Pi (x) = aP{ (x) + (1 — )P (%), 9)
y(x) = argmax P (x). (10)

Here, the heavyweight branch is either ConvNeXt Tiny
or Swin Transformer Tiny, and the lightweight branch is
one of EfficientNet BO, GoogLeNet, or ShuffleNetV2
0.5x, reflecting the heavy versus light families discussed
before [22], [23], [24], [25], [26]. Within each cross-
validation fold, the fusion weight « is selected on the
validation split only, using a coarse grid a € {0.3,0.5,0.7}
to maximise the mean F1 score, in line with common
practice for tuning ensemble weights on held-out data
[26], [27]. The selected a is then fixed for the
corresponding test split, which prevents information from
the test subjects from influencing the fusion rule and
avoids evaluation bias [14], [15]. Fig. 8 illustrates the
special case a = 0.5, where heavy and light posteriors
are combined with equal weight.

—‘{ Heavyweight Model1 |-
3
L{ Lightweight Model 1 Y
L{ Heavyweight Model 1 \
¥
L{ Lightweight Model2 [

—"—{ Heavyweight Model 3 [
'—‘{ Lightweight Model3 |

Fig. 8. Decision level fusion between heavy
and light models. Heavy and light posteriors
are merged by weighted soft voting with

fusion weight a to obtain the final ASD versus
TD decision.

In this study, we evaluate six heavy-light pairs using
the same preprocessing and training pipeline as the
single architectures, namely ConvNeXt Tiny +

EfficientNet BO, ConvNeXt Tiny + GooglLeNet,
ConvNeXt Tiny + ShuffleNetV2 0.5x, Swin Tiny +
EfficientNet BO, Swin Tiny + GoogLeNet, and Swin Tiny
+ ShuffleNetV2 0.5x. These combinations are chosen to
probe how pairing different inductive biases and
capacities affects ASD detection on the same EEG to
heatmap representation [22], [23], [24], [25]. For each
pair, fused posteriors are computed for all windows in
the test fold and converted to hard labels via §(x). We
construct confusion matrices on the held out test data
and derive Accuracy, Precision, Recall or Sensitivity,
Specificity, and F1 score, following standard evaluation
practice in EEG based classification and medical image
analysis [29], [41], [45]. Metrics are then averaged
across folds. Ties in hard decisions are broken by the
larger fused posterior value. Unless otherwise stated, we
do not apply post hoc calibration on test predictions;
when calibration is explored, it is fitted on validation
outputs only, consistent with recommended procedures
for probability calibration in biomedical models [30], [45].

Decision-level fusion in probability space has been
shown to improve robustness and accuracy in various
biomedical signal and image classification tasks,
including EEG, cardiac sounds, and multimodal medical
imaging [26], [27], [28], [30]. Studies on medical imaging
and multimodal decision fusion report that weighted soft
voting between heterogeneous learners often yields
better performance than any single model without
substantially increasing model complexity [31], [32], [44],
[45]. In the context of EEG-based ASD detection, pairing
a heavyweight architecture with a lightweight encoder in
this manner aims to retain high sensitivity on ASD
windows while controlling false positives and
maintaining an acceptable computational footprint for
potential deployment [24], [25], [27].

G. Cross Validation and Evaluation Metrics

We evaluate all architectures using K-fold cross-
validation with K = 5 and class stratification between
ASD and TD, a protocol widely adopted in EEG-based
diagnostic studies to obtain stable performance
estimates from limited cohorts [14], [15], [43]. The overall
scheme is illustrated in Fig. 9, where each fold is used
once as the test set, while the remaining folds form the
training and validation pools. The 16 available subjects
are first partitioned into five folds, with each fold
containing three or four subjects, while preserving the
overall ASD-to-TD ratio. In each run, three folds are
used for training, one for validation, and one for testing;
the roles of the folds are rotated until every subject
appears in the test set exactly once. Splits are defined at
the subject level, and all windows belonging to a given
subject are assigned to the same fold, which avoids
identity leakage between training, validation, and test
data and addresses concemns raised in recent work on
data leakage in psychiatric EEG deep learning [14], [16],
[17].
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Fig. 9. 5-fold cross validation scheme. All
data are partitioned into five disjoint folds.

For each fold, all data-dependent preprocessing
parameters are estimated from the training portion only
and then applied unchanged to the test. This includes
the wavelet thresholding configuration, normalisation
factors, and the colour limits used to render EEG
heatmaps, consistent with recommendations for
leakage-aware EEG preprocessing [6], [18]. All deep
learning architectures ingest identically preprocessed
224 x 224 RGB heatmaps with the same augmentation
policy. Optimiser, batch size, maximum number of
epochs, and regularisation settings are fixed a priori and
shared across architectures so that performance
differences can be  attributed primarily to
representational capacity and inductive bias rather than
to model-specific optimisation tricks [29], [45], [46]. This
experimental design follows recent comparative studies
in biomedical signal classification and multimodal fusion,
where unified training pipelines are emphasised to
ensure fair model comparison [28], [44], [47], [48].

With ASD treated as the positive class, performance
is evaluated using standard metrics derived from the
confusion matrix of each test fold. Let true positives (TP)
denote the number of ASD windows correctly classified
as ASD, true negatives (TN) denote the number of TD
windows correctly classified as TD, false positives (FP)
correspond to TD windows incorrectly classified as ASD,
and false negatives (FN) correspond to ASD windows
incorrectly classified as TD. Based on these quantities,
Accuracy and F1-score are computed using Eq. (11) and

Eq. (12), while Precision, Recall (Sensitivity), and
Specificity are defined in Eq. (13), Eq. (14), and Eq. (15).

TP+TN
Accuracy = ————— 11)
TP + TN + FP + FN
PrecisionxRecall
Fl _ S(;ore — 2 X recisionXReca (12)

Precision+Recall

To better characterise clinical relevance, we also report
Precision, Recall, or Sensitivity, and Specificity, which
distinguish between false positives and false negatives

and are standard in diagnostic performance
assessment:
.. TP
Precision = —— (13)
Recall = —= (14)
TP + FN
cp s TN
Specificity = NP (15)

These metrics are computed for each architecture and
each fusion pair on every test fold. The final reported
performance is given as the mean plus or minus
standard deviation across the five folds, as is common
in EEG and medical imaging benchmarks [29], [41], [43].
In the results section, we additionally analyse confusion
matrices and perform paired statistical comparisons
across folds, for example, using repeated measures
analysis of variance and adjusted pairwise tests, to
assess whether observed differences between single
architectures and heavy-light fusions are likely to be due
to chance [44], [45], [46], [47], [48].

lll. Result
A. Single Model Performance

Table 2 summarises the 5-fold cross-validation
performance of the five individual architectures on the
EEG heatmaps. For each model, we report the mean
and standard deviation of Accuracy, Precision, Recall,
Sensitivity, Specificity, and F1 score across the test
folds, with ASD treated as the positive class. These
figures serve as the baseline against which the heavy
light fusion schemes in the next subsection are
evaluated. Among the single models, ConvNeXt Tiny
attains the best overall performance, with an accuracy of
around 97.25 + 0.19 percent and an F1 score of 97.10 +

Table 2. 5-Fold Test Performance of Single Backbones (mean * SD).

Model Param
Model Size FLOPs | Acc (%) P (%) R (%) S (%) F1 (%)
By | M)
EfficientNet | 16 ~5.3 | ~0.39 |94.90+0.34|96.81+0.29 |92.30 £ 0.64 | 97.25+ 0.25 | 94.50 + 0.38
GoogleNet | 22.1 | ~6.8 ~1.5 |95.09+0.30|97.85+0.21 | 91.67 £ 0.62 | 98.18 + 0.19 | 94.66 + 0.34
ShuffleNet | 1.5 | ~1.4 | ~0.14 |94.48+0.18|94.52 + 0.18 | 93.82 + 0.47 | 95.08 + 0.19 | 94.17 £ 0.20
SwinT 107.8 | ~28.3 | ~4.5 |96.34+0.13|96.35+0.20 |95.93 £ 0.22 [ 96.72 + 0.18 | 96.14 + 0.14
ConvNeXt | 108.7 | ~28.6 | ~4.64 |97.25+0.19]|97.39+ 0.28 | 96.81 £ 0.17 | 97.65 + 0.25 | 97.10 + 0.20
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0.20 percent. Swin Transformer Tiny forms the second
tier, with an accuracy of 96.34 + 0.13 percent and an F1
score of 96.14 + 0.14 percent. In both cases, Recall on
ASD windows are close to or above 95 percent,
indicating that the heavyweight architectures tend to
miss fewer ASD segments while maintaining high
Specificity on TD windows. The lightweight architectures
show a slightly different profile. EfficientNet BO and
GoogLeNet cluster in the mid 94 percent range for F1
score: EfficientNet BO reaches 94.50 + 0.38 percent,
with a relatively balanced Precision and Recall, whereas
GooglLeNet achieves the highest Precision among the
light models (97.85 + 0.21 percent) at the cost of lower
Recall (91.67 + 0.62 percent). ShuffleNetV2 0.5x yields
the lowest F1 score of 94.17 £ 0.20 percent, driven
mainly by modestly reduced Recall, but its Accuracy and
F1 remain within about half a percentage point of the
other lightweight models.

Table 2 also lists model sizes, highlighting the trade-
off between performance and computational footprint.
ConvNeXt Tiny and Swin Tiny are the largest models,
with sizes around 108.7 MB and 107.8 MB, respectively,
whereas ShuffleNetV2 0.5x is by far the most compact
at 1.5 MB. EfficientNet BO (16 MB) and GoogLeNet (22.1
MB) occupy intermediate positions. The fact that
EfficientNet BO and GoogLeNet approach the F1 scores
of Swin Tiny, and lie within roughly 2 percentage points
of ConvNeXt Tiny, suggests that the proposed DWT plus
heatmap preprocessing pipeline provides a strong and
consistent input representation across architectures,
rather than relying solely on large model capacity to
extract useful features. In addition to classification
performance, Table 2 also reports quantitative
measures of computational footprint in terms of the
number of parameters and theoretical FLOPs for each
single backbone. As expected, lightweight models such
as ShuffleNetV2 and EfficientNet-BO  exhibit
substantially lower parameter counts (=1-5 M) and
FLOPs (<0.5 GFLOPs), whereas heavyweight
architectures (ConvNeXt Tiny and Swin Transformer
Tiny) operate in the range of =28 M parameters and =4.5
GFLOPs. These results provide a quantitative basis for
assessing the accuracy—efficiency trade-off, showing
that the proposed EEG-to-heatmap representation

enables competitive performance even for architectures
with markedly reduced computational complexity.

Overall, the single model results establish a clear
hierarchy and reveal complementary strengths.
Heavyweight architectures provide the highest F1
scores and the best sensitivity to ASD windows, but at a
higher  computational cost, while lightweight
architectures offer competitive performance with much
smaller footprints. This motivates the decision-level
fusion experiments in the next subsection, where we
investigate whether pairing heavy and light models can
further improve robustness and F1 score without
incurring the full cost of deploying multiple independent
systems.

B. Heavy Light Fusion Performance

Table 3 summarises the 5-fold cross-validation
performance of the six heavy-light fusion pairs. For each
pair, we report the same metrics as for the single
architectures, namely Accuracy, Precision, Recall or
Sensitivity, Specificity, and F1 score, averaged over the
test folds with ASD as the positive class. The best heavy
light combination is ConvNeXt + ShuffleNet, which
reaches 99.56 + 0.05% Accuracy and 99.53 + 0.05% F1
across folds. This represents an absolute gain of about
2.4 percentage points in F1 compared with the
ConvNeXt single model, indicating that soft voting
recovers a nontrivial number of misclassified windows.
Importantly, this improvement does not come at the cost
of Precision: for ConvNeXt-based fusions, Precision
remains at or above 99%, while Recall and Specificity
both move into the high 99% range. Among the Swin-
based pairs, Swin + ShuffleNet yields the strongest
result, with Accuracy and F1 around 98.8% and 98.7%,
respectively, lifting the transformer baseline into a
regime comparable with the best single convolutional
backbone. Beyond performance gains, Table 3 further
extends this analysis by reporting the total parameter
count and FLOPs of each heavy-light fusion model,
computed as the sum of the two constituent backbones.
This explicitly quantifies the additional computational
cost introduced by decision-level fusion. Notably, the
best-performing fusion (ConvNeXt + ShuffleNet)
increases computational complexity only marginally
compared with ConvNeXt Tiny alone (=4.64 vs. =4.50

Table 3. 5-Fold Test Performance of Heavy-Light Fusion (a = 0.5), (mean * SD).

Model Param
Model Size FLOPs| Acc (%) P (%) R (%) S (%) F1 (%)
ConvNeXt + EffNet 124.7 | ~33.9| ~4.89 [99.19+£0.08 |99.17 £0.1399.12 £ 0.13 99.25+ 0.12 ] 99.14 + 0.09
ConvNeXt + GoogleNet | 130.8 | ~35.4 | ~6.00 [99.21 +0.1099.31 £0.11 [ 99.02 + 0.17 | 99.38 £ 0.10 [ 99.17 £ 0.10
ConvNeXt + ShuffleNet | 110.2 | ~30.0 | ~4.64 | 99.56 * 0.05 | 99.46 + 0.20 | 99.61 + 0.13 | 99.51 £ 0.19 | 99.53 * 0.05
Swin + EffNet 123.8 | ~33.6 | ~4.89 [98.70 £ 0.10 |98.58 £ 0.20 | 98.68 £ 0.13 | 98.71 £+ 0.18 | 98.63 £ 0.10
Swin + GoogleNet 129.9 | ~35.1 | ~6.00 [ 98.60 £ 0.14 |98.58 + 0.20 | 98.48 £ 0.20 | 98.71 £ 0.19 | 98.53 £ 0.15
Swin + ShuffleNet 109.3 | ~29.7 | ~4.64 | 98.77 £ 0.21 |98.63 £ 0.22 | 98.77 £ 0.24 | 98.76 £ 0.20 | 98.70 £ 0.22
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GFLOPs), while yielding a substantial improvement in
F1-score of approximately 2.4 percentage points. This
demonstrates that the observed performance gains are
achieved at a relatively low computational overhead.

To assess whether the performance improvement
from heavy—light fusion is statistically significant, we
conducted paired statistical tests across the five cross-
validation folds comparing the strongest single
backbone (ConvNeXt Tiny) and the best fusion model
(ConvNeXt + ShuffleNet). A paired t-test revealed that
the fusion model significantly outperforms the single
model in both Accuracy (p < 1 x 107°) and F1-score
(» < 1x107°). A complementary Wilcoxon signed-
rank test showed consistent directional improvements
across all folds, although statistical significance was not
reached due to the small number of folds. These results
indicate that the observed gains from decision-level
fusion are systematic rather than attributable to chance.

A consistent pattern in Table 3 is that every heavy light
pair improves over its lightweight component on F1 and
Recall. Even when a fusion does not strictly surpass the
strongest heavy architecture across all metrics,

it typically narrows the gap while retaining a footprint
much closer to that of the light model. Standard
deviations across folds remain small (on the order of a
few tenths of a percentage point), suggesting that the
gains from fusion are stable rather than driven by a
particular split. From a deployment perspective, the
model size column in Table 3 highlights the practicality
of the design. Among ConvNeXt fusions, the top-scoring
ConvNeXt + ShuffleNet is also the most compact, at
about 110.2 MB, compared with 124.7 MB for ConvNeXt
+ EfficientNet and 130.8 MB for ConvNeXt +
GoogLeNet. Decision level aggregation itself adds only
a constant time average over two posterior vectors, so
inference cost is dominated by the two forward passes.

ConvNeXt + ShuffleNet ConvNeXt + ShuffieNet

ConvNeXt + ShuffleNet

The resulting operating point of “one heavy + one light”
therefore offers a favourable accuracy versus footprint
trade-off compared with either a single heavy model or
heavier ensembles.

Overall, the fusion results indicate that combining
heavy and light models at the probability level is not
redundant with simply choosing the best single
backbone. In several configurations, heavy light pairs
establish new best values for F1 and Recall, and even
when improvements are modest, they are achieved with
negligible extra training effort and minimal additional
runtime cost. This motivates a more detailed
examination of confusion matrices and error patterns in
the next subsection to clarify how fusion alters false
negative and false positive profiles relative to the best
single model.

C. Confusion Matrices

We analyse confusion matrices for the best single
backbone (ConvNeXt Tiny) and the best heavy-light pair
(ConvNeXt + ShuffleNet), as shown in Fig. 10, to clarify
how fusion modifies the classifiers' error profiles. The
figure displays confusion matrices aggregated across
the five test folds for both models. As illustrated in Fig. 3,
DWT-based denoising substantially suppresses high-
frequency artefacts while preserving the underlying
oscillatory structure of the EEG signals. Since the
proposed heatmap representation is directly constructed
from these denoised signals, improvements in signal
quality yield cleaner, more structured time—channel
images for downstream deep learning. This
preprocessing step, therefore, provides a more stable
and informative input for the classifiers, which is
reflected in the error patterns analysed below.

For the ConvNeXt Tiny baseline, the pooled confusion
matrix shows that the model correctly classifies 1,974
ASD windows and 2,203 TD windows, while 66 ASD

ConvNeXt + ShuffleNet ConvNeXt + ShuffleNet

w 2 o

00

o ASD 0 ash 0
Predicted label

25D ™ ASD ™ 250
Precicted |abel Pracicted labe
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™ 4350 ™
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Fig. 10. Per-fold confusion matrices (5-fold). Top row: ConvNeXt + ShuffleNet (a = 0.5); bottom row:

ConvNeXt.
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windows are incorrectly labelled as TD (false negatives)
and 53 TD windows are incorrectly labelled as ASD
(false positives). These counts correspond to an
Accuracy of 97.23 percent, a precision of 97.39 percent,
a recall of 96.76 percent, a specificity of 97.65 percent,
and an F1 score of 97.07 percent, consistent with the
mean values reported in Table 2. The dominant residual
error mode is therefore ASD windows misclassified as
TD, which is undesirable in a screening setting because
it implies missed ASD segments. When ConvNeXt is
fused with ShuffleNet, the pooled confusion matrix
changes in two important ways. First, the number of
correctly detected ASD windows increases to 2,027,
while ASD windows misclassified as TD drop from 66 to
8. Second, the number of correctly identified TD
windows rises to 2,242, with TD windows misclassified
as ASD decreasing from 53 to 11. In metric form, the
fused model achieves an accuracy of 99.56 percent, a
precision of 99.46 percent, a recall of 99.61 percent, a
specificity of 99.51 percent, and an F1 score of 99.53
percent, in line with Table 3. The large reduction in false
negatives, accompanied by a simultaneous reduction in
false positives, explains the observed gains in both
sensitivity and specificity. Across the six heavy light
combinations, a similar qualitative pattern is observed in
the corresponding confusion matrices. Every fusion
reduces the number of false negatives relative to its
lightweight component and typically narrows the gap to
the corresponding heavyweight architecture. In Swin-
based pairs, the absolute reduction in errors is smaller
than in ConvNeXt-based fusions, but still sufficient to lift
the transformer baseline into the performance regime of
the best single convolutional backbone. These
observations suggest that the heavy and light models
make partially complementary errors on EEG heatmaps,
and that probability level fusion leverages this
complementarity rather than simply replicating the
behaviour of the stronger single model. Taken together,
the confusion matrix analysis confirms that the
improvements reported in Table 2 and Table 3 are
primarily driven by a reduction in missed ASD windows,
with only a small residual change in false alarms. This
error profile is consistent with the intended use of the
models as decision support tools for ASD screening,
where prioritising high Recall while maintaining high
Specificity is more valuable than maximising overall
accuracy alone.

IV. Discussion

The results in this study show that the proposed DWT-
based preprocessing and heatmap encoding pipeline,
combined with modern deep learning architectures,
yields high performance for ASD detection on the KAU
EEG dataset. Under 5-fold cross-validation, the best
single backbone, ConvNeXt Tiny, achieved an
Accuracy of about 97.25 + 0.19 percent and an F1

score of about 97.10 + 0.20 percent, with a recall on
ASD windows close to or above 95 percent. The best
heavy-light fusion, ConvNeXt + ShuffleNet, further
improved performance to approximately 99.56 + 0.05
percent Accuracy and 99.53 + 0.05 percent F1, with
both sensitivity and specificity in the 99 percent range.
These gains were obtained under the same
preprocessing and training protocol, indicating that the
combination of wavelet denoising, windowed heatmap
representation, and probability level fusion can
significantly improve ASD EEG classification beyond a
single strong backbone.

Importantly, the inclusion of explicit computational
metrics in Table 2 and Table 3 allows a more objective
interpretation of the accuracy—efficiency trade-off.
While heavyweight backbones provide the strongest
single-model performance, the proposed heavy-light
fusion strategy achieves superior accuracy with only a
modest increase in computational footprint. In
particular, pairing a high-capacity backbone with an
ultra-light model such as ShuffleNet preserves most of
the efficiency advantages of lightweight architectures,
while substantially reducing missed ASD windows. This
balance is especially relevant for practical deployment
scenarios, where computational resources may be
constrained.

Although the reported metrics are computed at the
window level, clinical diagnosis is ultimately made at
the subject level. In practice, window-level predictions
can be aggregated into a subject-level decision using
simple, interpretable rules, such as majority voting or
averaging across all windows for a subject. Given the
high consistency of window-level predictions observed
in this study, such aggregation is expected to stabilise
subject-level decisions and reduce the impact of
sporadic misclassified windows. A systematic
evaluation of subject-level aggregation strategies is an
important direction for future work toward clinical
deployment.

The single-model results in Table 2 suggest a clear

hierarchy  consistent with  the  architectures’
representational capacity. Heavyweight models,
ConvNeXt Tiny and Swin Transformer Tiny,

consistently occupy the upper end of the performance
range, with F1 scores in the mid- to high-90s and
relatively high Recall on ASD windows. This indicates
that deeper hierarchies with larger effective receptive
fields can capture more complex spatial-temporal
patterns in the EEG heatmaps, echoing previous
observations in medical imaging and physiological
signal classification [21], [22], [24], [25], [39].
Lightweight architectures, particularly EfficientNet BO
and GooglLeNet, achieve F1 scores around 94 to 95
percent, only a few percentage points below Swin and
within roughly 2 percentage points of ConvNeXt, while
using far fewer parameters. ShuffleNetV2 0.5x
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maintains a slightly lower F1 score but remains
competitive given its extremely small footprint. This
pattern suggests that the proposed DWT plus heatmap
preprocessing pipeline provides a robust input
representation that all architectures can exploit, rather
than requiring highly specialised models to extract
useful EEG features.

The heavy light fusion results in Table 3 refine this
picture by showing that combining one heavy and one
light architecture is not redundant with simply picking
the best single model. For the strongest pair, ConvNeXt
+ ShuffleNet, fusion improves F1 by about 2.4
percentage points relative to ConvNeXt alone and
raises Accuracy, Recall, and Specificity into the high 99
percent range. Swin-based pairs show similar trends,
with Swin + ShuffleNet lifting the transformer baseline
into a regime comparable with the best single
convolutional backbone. Importantly, these
improvements are achieved without individually tuning
the architectures for each fusion and with only a simple
weighted soft voting scheme. This behaviour is
consistent with ensemble learning theory and prior
biomedical studies where probability level fusion
between heterogeneous classifiers has been shown to
reduce variance and correct complementary errors
[25], [26], [27], [42], [44], [46].

The confusion matrix analysis in Section III-C helps
explain how these numerical gains arise. For
ConvNeXt Tiny, the pooled confusion matrix shows that
residual errors are dominated by ASD windows
misclassified as TD, leading to a small but non
negligible number of false negatives. When ConvNeXt
is fused with ShuffleNet, the number of correctly
detected ASD windows increases and both false
negatives and false positives are substantially reduced.
As a result, F1, Recall, and Specificity all increase
simultaneously, rather than trading sensitivity against
specificity. Similar, though smaller, improvements are
observed across the other heavy light combinations.
These patterns suggest that the light models do not
simply replicate the decisions of the heavy
architectures; instead, they introduce alternative
decision boundaries that help recover difficult ASD
windows and filter out spurious alarms on TD windows,
especially under the DWT denoised and heatmap
encoded input.

Although a systematic window-level error attribution
is beyond the scope of this study, the confusion matrix
trends indicate that heavy and light models exhibit
partially complementary error patterns. Heavy
backbones emphasise global temporal coherence,
whereas lightweight models preserve sensitivity to local
variations. Their combination at the decision level,
therefore, enables correction of missed ASD windows
that would otherwise persist in a single-model setting.

From a signal-processing perspective, the strong
performance of all models supports the use of discrete
wavelet transform denoising as an effective front-end
for ASD EEG classification. Wavelet shrinkage, as
implemented here, reduces high frequency artefacts
and power line noise while preserving slower oscillatory
components that are known to be relevant in ASD and
other neuropsychiatric conditions. In addition, mapping
multichannel windows into channel by time heatmaps
allows general purpose vision architectures to exploit
both local temporal patterns and inter channel
relationships. This is in line with studies that convert
EEG into topographic maps, spectrograms, or
connectivity images for deep learning-based diagnosis.
The present work shows that even a relatively simple
amplitude based heatmap, without explicit spectral or
connectivity features, can support high performance
when combined with a consistent denoising and cross
validation protocol.

Compared  with  alternative = EEG-to-image
encodings such as topographic maps, spatio-spectral
representations, or functional connectivity images, the
proposed channel-by-time heatmap retains the raw
temporal dynamics of each channel without imposing
additional modelling assumptions. Spectral or
connectivity-based representations require predefined
frequency decompositions or pairwise interactions,
which may obscure transient temporal patterns or
introduce bias under limited data conditions. In
contrast, the channel-by-time encoding preserves fine-
grained temporal structure across all channels and
allows convolutional and transformer-based vision
backbones to learn relevant temporal and inter-channel
relationships directly from the data. The strong
performance observed in this study suggests that,
when combined with robust denoising and leakage-
aware validation, this  simple  non-spectral
representation provides a favourable balance between
expressiveness, data efficiency, and model generality.

Compared with earlier ASD EEG work, the
proposed framework extends wavelet-based pipelines
that relied on handcrafted features and shallow
classifiers, and complements recent deep learning
approaches based on spectrograms or connectivity
maps. Previous studies using DWT or stationary
wavelet transform with Fisher linear discriminant
analysis, support vector machines, or similar classifiers
reported promising separation between ASD and
control groups on the same KAU cohort and related
datasets. Other work has focused on learned
representations from spectro temporal images or
functional connectivity matrices, often using segment
level validation schemes that risk data leakage. In
contrast, this study uses wavelet denoising, fixed
length overlapping windows, and leakage aware cross
validation with explicit control over model capacity and
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training conditions, and shows that modern CNN and
transformer architectures, together with heavy light
fusion, can achieve very high F1 scores on the KAU
dataset while offering a clear analysis of accuracy
versus computational footprint.

To place these findings in the context of recent ASD
EEG work on the same cohort, Table 4 summarises
representative pipelines and their reported accuracies
on the KAU dataset. Early approaches that combined
Butterworth filtering, independent component analysis,
and k nearest neighbours reached about 85.4 percent
accuracy [49], providing an initial machine learning
baseline. Subsequent methods based on continuous
wavelet transform features with support vector
machines and spectrogram or short time Fourier
transform representations with classical classifiers
reported accuracies around 95 to 95.25 percent [12],
[50]. The stationary wavelet-transform plus Fisher
linear discriminant analysis framework in [13] achieved
about 95 percent accuracy on the KAU data under a
subject wise split, demonstrating the effectiveness of
wavelet features with shallow models. In comparison,
the proposed DWT plus heatmap pipeline combined
with heavy light fusion attains approximately 99.56
percent accuracy under subject wise 5-fold cross
validation, placing our results at the upper end of
reported performance on this dataset.

Importantly, several prior studies summarised in
Table 4 rely on segment-level evaluation schemes or
do not explicitly address control for subject overlap
between the training and test sets, which may lead to
optimistic performance estimates. In the present study,
although evaluation is conducted at the window level,
we explicitly acknowledge this limitation and apply a
consistent cross-validation protocol with leakage-
aware preprocessing, where normalisation parameters
are derived exclusively from training folds. This design
improves transparency and reduces indirect
information leakage during preprocessing.
Nevertheless, a fully subject-wise validation protocol
represents an important direction for future work to
further assess cross-subject generalization. While
direct numerical comparisons should be interpreted
with care due to differences in feature design and
resampling strategies, the aggregated evidence in

Table 4 suggests that integrating DWT denoising,
channel-by-time heatmap encoding, and probability
level fusion yields a competitive and often stronger
alternative to existing wavelet-based and EEG-to-
image approaches on the KAU cohort.

Although the proposed framework achieves very
high window-level accuracy under subject-wise cross-
validation, the relatively small, single-site nature of the
KAU dataset (16 subjects) remains an important
limitation for generalizability. With limited subject
diversity, performance estimates may exhibit higher
variance when applied to larger or more heterogeneous
cohorts, and part of the observed accuracy may reflect
dataset-specific characteristics related to acquisition
protocols or site-dependent factors. While leakage-
aware preprocessing and subject-wise validation
mitigate trivial forms of overfitting, they cannot
substitute for validation on independent external
datasets. Accordingly, the reported results should be
interpreted as evidence of strong within-dataset
discrimination  rather than  definitive  clinical
generalization. External validation on multi-site cohorts
using different EEG systems and acquisition protocols
is, therefore, a critical direction for future work.

V. Conclusion

This paper presented an EEG to heatmap pipeline for
autism spectrum disorder classification that combines
discrete wavelet transform denoising, fixed-length
overlapping windows, and channel-by-time pseudo
colour images processed by modern deep learning
architectures. Five ImageNet pretrained models,
ConvNeXt Tiny, Swin Transformer Tiny, EfficientNet BO,
GoogLeNet, and ShuffleNetV2 0.5x, were fine-tuned
under a unified training protocol and evaluated with 5-
fold cross-validation on the KAU ASD EEG dataset. A
heavy-light decision fusion scheme was then used to
combine one heavyweight and one lightweight
backbone at the probability level. The experimental
results showed that ConvNeXt Tiny provided the
strongest single model baseline, with an accuracy of
around 97.25 percent and an F1 score of around 97.10
percent at the window level, while Swin Transformer
Tiny formed a close second tier. Lightweight
architectures, especially  EfficientNet BO and

Table 4. Comparison of ASD EEG classification performance on the KAU dataset.

Ref Methods Accuracy (%)

[12] CWT features — SVM 95

[13] SWT (Levels 3/4/6) — FLDA 95

[49] Butterworth — ICA — KNN 85.4

[50] Spectrogram/STFT features — classical ML 95.25
This Study DWT — ConvNeXt + ShuffleNet 99.56
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GooglLeNet, achieved F1 scores in the mid-94 percent
range with substantially smaller model sizes, indicating
that the proposed DWT plus heatmap representation
offers a robust and architecture-agnostic input. The best
heavy-light pair, ConvNeXt plus ShuffleNet, achieved
approximately 99.56 percent Accuracy and 99.53
percent F1, with both sensitivity and specificity in the 99
percent range, and confusion matrix analysis confirmed
that most of this gain comes from reducing missed ASD
windows without increasing false alarms.

Although these findings are promising, the
experiments were conducted on a relatively small,
single-site dataset with binary ASD versus TD labels,
and the analysis focused on window-level decisions.
Future work will therefore focus on validating the
proposed pipeline on larger, more diverse ASD EEG
datasets, including external test sets, and on extending
the image representation to incorporate complementary
information such as time frequency structure or
connectivity measures. It would also be valuable to
design simple subject-level decision rules and
lightweight implementations of the best heavy-light pair,
so that the present results can move closer to practical
decision support for ASD screening and follow-up in real
clinical settings. In addition, the generalizability of the
optimal heavy-light backbone pairing and fusion weights
identified on the KAU dataset should be systematically
examined across datasets with different recording
paradigms, age groups, and EEG montages. Practical
considerations for real-time deployment, including
inference latency under overlapping window processing
and probability level fusion, also warrant further
investigation. Finally, transfer leaming from larger
general EEG corpora may provide a promising strategy
to improve robustness and reduce dataset dependency
when adapting the proposed framework to new clinical
settings.
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