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Abstract Autism spectrum disorder is a neurodevelopmental condition that affects social communication 
and behaviour, and diagnosis still relies on subjective behavioural assessment. Electroencephalography 
provides a noninvasive view of brain activity but is noisy and often analysed with handcrafted features or 
evaluation schemes that risk data leakage. This study proposes a deep learning pipeline that combines 
wavelet denoising, EEG-to-image encoding, and heavy-light decision fusion for autism detection from EEG. 
Sixteen-channel EEG from children and adolescents with autism and typically developing peers in the KAU 
dataset is denoised using discrete wavelet transform shrinkage, segmented into fixed 4 second windows, 
and rendered as pseudo colour heatmaps. These images are used to fine-tune five ImageNet pretrained 
architectures under a unified training protocol with 5-fold cross-validation. Heavy-light fusion combines 
one heavyweight backbone and one lightweight backbone through weighted soft voting on class posterior 
probabilities. The strongest single model, ConvNeXt Tiny, attains about 97.25 percent accuracy and 97.10 
percent F1 score at the window level. The best heavy light pair, ConvNeXt plus ShuffleNet, reaches about 
99.56 percent accuracy and 99.53 percent F1, with sensitivity and specificity in the 99 percent range. Fusion 
mainly reduces missed ASD windows without increasing false alarms, indicating complementary error 
patterns between heavy and light models. These findings show that the proposed denoise encode classify 
pipeline with heavy light fusion yields more robust autism EEG classification than individual backbones 
and can support EEG-based decision support in autism screening. 

Keywords Electroencephalography; Autism Spectrum Disorder; Wavelet Denoising; Heatmap; Deep 
Learning; Decision Fusion. 

I. Introduction 

Autism spectrum disorder (ASD) is a heterogeneous 
neurodevelopmental condition that affects social 
communication, behaviour, and sensory processing 
across the lifespan. Clinical diagnosis still relies 
primarily on behavioural assessment, which is time-
consuming and inherently subjective, often leading to 
inter-clinician variability and delayed identification, 
particularly during early childhood when symptoms 
may be subtle or atypical. These limitations are further 
exacerbated in resource-limited settings with restricted 
access to specialised clinicians, motivating a strong 

interest in objective, physiology-based markers that 
can support earlier, more consistent, and scalable 
detection and follow-up. Electroencephalography 
(EEG) offers a noninvasive, high-temporal-resolution 
window into brain dynamics and has become a key 
modality for biomarker research in psychiatry and 
developmental neuroscience [1], [2]. Recent reviews 
show that EEG-derived measures, including oscillatory 
power, complexity, and connectivity, can distinguish 
ASD from typically developing cohorts and can be used 
as input to machine learning systems for computer-
aided diagnosis [2], [3], [4], [5]. 
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Raw EEG signals, however, have a low signal-to-
noise ratio and are highly nonstationary. Muscle 
activity, eye movements, and environmental 
interference can obscure subtle neurophysiological 
patterns relevant to classification. Robust 
preprocessing is therefore essential before modelling 
[6]. Wavelet-based denoising with the discrete wavelet 
transform (DWT) provides joint time and frequency 
localisation and a multiresolution decomposition that 
matches both fast transients and slow rhythms. Survey 
papers and application studies report that wavelet 
shrinkage can effectively reduce ocular and muscle 
artefacts and power line interference while preserving 
clinically important morphology [7], [8], [9], [10]. In ASD 
EEG studies, wavelet domain pipelines such as DWT 
and stationary wavelet transform combined with linear 
discriminants or support vector machines have already 
demonstrated reliable case control separation, 
especially in paediatric cohorts [11], [12], [13]. 

Alongside denoising, evaluation protocols have a 
major impact on reported performance. Several deep 
learning papers on psychiatric EEG datasets have 
highlighted that segment-wise cross-validation can 
easily cause data leakage when windows from the 
same subject are split across training and test folds, 
leading to overly optimistic performance estimates [14], 
[15]. This concern is particularly pronounced in studies 
based on small subject cohorts, where limited sample 
diversity poses additional challenges for model 
generalizability. Recent work also shows that choices 
in filtering, referencing, and artefact handling can 
substantially change decoding accuracy, underscoring 
the need for transparent, leakage-aware preprocessing 
and subject-wise validation in EEG-based classification 
[16]. 

To exploit mature computer vision models, an 
emerging line of work converts preprocessed EEG into 
two-dimensional image representations, such as 
topographic maps, spatio spectral feature images, and 
connectivity maps [3], [17], [18], [19], [20]. These EEG 
to image encodings allow convolutional neural 
networks and transformer-based architectures to 
capture local patterns within channels and global 
relationships across channels in a single structured 
input, and they have achieved strong performance in 
several neuropsychiatric and neurodegenerative 
applications [17], [18], [19], [20]. Among these 
representations, channel-by-time heatmaps preserve 
the temporal evolution of each EEG channel within 
fixed windows while maintaining a consistent inter-
channel ordering, enabling joint modelling of temporal 
dynamics and cross-channel relationships. Compared 
with topographic maps or spatio-spectral and 
connectivity images, this representation avoids 
additional feature engineering and provides a more 

direct and interpretable spatial–temporal structure for 
window-based ASD EEG analysis [21]. 

In parallel, modern computer vision backbones have 
evolved along two directions. Heavyweight networks 
such as ConvNeXt and transformer-based models offer 
high representational capacity at the cost of memory 
and computation, while lightweight architectures such 
as EfficientNet B0, GoogLeNet, and ShuffleNet are 
designed for deployment on constrained devices [22], 
[23], [24], [25]. Ensemble and decision fusion strategies 
that combine heterogeneous learners at the probability 
level have been shown to improve accuracy and 
stability in biomedical signal and medical image 
classification without major changes to the underlying 
models [26], [27], [28], [29], [30], [31], [32]. Building on 
this, combining one heavyweight and one lightweight 
model is hypothesised to exploit complementary 
characteristics, where the heavy model captures 
complex spatial–temporal patterns while the light 
model enhances robustness and efficiency, yielding 
improved performance without the full cost of heavy-
only ensembles [26], [28]. 

Despite these advances, several limitations remain 
in current ASD EEG classification studies. Many 
wavelet-based pipelines rely on handcrafted features 
and a single shallow classifier, without assessing how 
different modern deep backbones behave on the same 
preprocessed data [11], [12], [13]. Deep learning 
approaches that operate on spectrograms or 
connectivity maps often use segment-level validation, 
which risks subject leakage and may overestimate 
performance on small datasets [4], [14], [15], [32]. 
Furthermore, the combined effect of wavelet denoising, 
non-spectral channel by time heatmap encoding, and 
heavy light model fusion under strictly subject-wise 
cross-validation on the widely used KAU ASD EEG 
dataset has not yet been systematically evaluated. 

Based on the above observations, this study aims to 
directly address key methodological limitations in 
existing ASD EEG classification research, including the 
reliance on handcrafted features and shallow 
classifiers, the use of spectral or connectivity-driven 
representations that require additional modelling 
assumptions, and the risk of subject-level data leakage 
due to segment-wise evaluation. To this end, we 
develop and evaluate a leakage-aware EEG-to-
heatmap pipeline that integrates wavelet-based 
denoising, non-spectral channel-by-time encoding, 
modern deep vision backbones, and heavy–light 
decision fusion under strictly subject-wise cross-
validation. The main contributions of this work can be 
summarised as follows: 

1) We propose an end-to-end pipeline that converts 
raw multi-channel EEG into denoised, fixed-length 
segments and subsequently into non-spectral 
channel-by-time heatmaps, thereby avoiding 
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handcrafted feature extraction and frequency-
domain assumptions commonly used in 
spectrogram- or connectivity-based approaches, 
while preserving interpretable spatial–temporal 
patterns across channels.  

2) We design a heavy–light decision-level fusion 
scheme that explicitly combines models with 
complementary capacities, addressing the 
limitations of single shallow classifiers and 
homogeneous ensembles by leveraging both 
high-capacity representation learning and 
robustness from lightweight architectures under a 
unified inference framework.  

3) We adopt a strictly subject-wise cross-validation 
protocol with leakage-aware preprocessing to 
directly mitigate the risk of data leakage 
associated with segment-level validation, and we 
report clinically relevant performance metrics 
together with confusion matrices and statistical 
significance tests. 

4) We provide empirical evidence that the proposed 
combination of wavelet-based denoising, non-
spectral EEG-to-heatmap encoding, and heavy–
light fusion yields more robust ASD EEG 
classification than individual backbones, while 
achieving a favourable trade-off between 

classification performance and computational 
cost. 

An overview of the proposed EEG to heatmap ASD 
classification framework is illustrated in Fig. 1. Raw 16-
channel EEG from the KAU dataset is denoised with 
DWT, segmented into overlapping 4-second windows, 
converted into channel-by-time heatmaps, and then 
processed by heavy and light vision backbones whose 
outputs are combined through decision-level fusion. 
The rest of this paper is organised as follows. Section 
2 describes the dataset, EEG preprocessing, and 
heatmap generation. Section 3 details the selected 
heavy- and light-vision backbones and the decision-
fusion strategy. Section 4 presents the experimental 
setup and results. Section 5 discusses the findings, 
practical implications, and limitations. Section 6 
concludes the paper and outlines directions for future 
research.  

 

II. Materials and Methods 

A. Dataset 

This study analyzes a public EEG dataset provided by 
King Abdulaziz University (KAU), Jeddah, Saudi 
Arabia, comprising recordings from 16 subjects, 8 
children with ASD and 8 typically developing controls, 
distributed as 16 recordings by 16 channels in BCI2000 

 
Fig. 1. Overview of the proposed EEG to heatmap ASD classification framework. 
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.dat format [33]. Each sample contains the standard 10 
20 montage (Fp1, F3, F7, T3, T5, O1, C4, Fp2, Fz, F4, 
F8, C3, Cz, Pz, Oz, O2). We retained the full 16-
channel layout to bilaterally sample frontal, temporal, 
central, parietal, and occipital regions that are 
frequently implicated in ASD, consistent with prior EEG 
findings of atypical frontal and fronto-posterior 
coherence and altered spectral power profiles, 
including reduced alpha, relative increases in theta and 
beta, and reports of elevated high-frequency activity 
[34], [35], [36]. The same KAU cohort has also been 
used in recent wavelet-based ASD studies, for example 
stationary wavelet transform combined with Fisher 
linear discriminant analysis, which facilitates 
methodological comparability with our protocol [13]. 

All personal identifiers are absent in the public 
release. Group membership is provided at the subject 
level (ASD versus control) without per-event clinical 
markers or ASD subtyping. The cohort includes eight 
ASD participants (five males and three females, ages 6 
to 20 years, total 4,104.2 seconds of EEG) and eight 
controls (all males, ages 9 to 13 years, total 4,534.9 
seconds). Group labels were assigned by the KAU 
Hospital clinical team and are used here as ground 
truth. The public description does not specify the 
diagnostic instruments that were used, such as ADOS, 
ADI-R, or DSM 5, which we acknowledge as a limitation 
of the source data [33]. 

Recordings were acquired in a relaxed state using 
Ag/AgCl electrodes with a g.tec EEG device and a USB 
amplifier under BCI2000, sampled at 256 Hz, with an 
acquisition bandpass of 0.1 to 60 Hz and a 60 Hz notch 
filter. The original study reports that annotations were 
performed by qualified clinical staff following KAU 
Hospital standard diagnostic procedures for ASD, that 
written informed consent was obtained from all 
participants or their legal guardians prior to acquisition, 
and that all data were fully anonymised before public 
release, under approval from the KAU Ethics 
Committee. Dataset access requests can be directed 
to the data custodian listed in the original publication. 
The present work involves only secondary analysis, 
with no new data collection or direct contact with 
human participants, and therefore adheres to the 
ethical framework described in [33]. 

B. Discrete Wavelet Transform (DWT) 

Electroencephalography (EEG) signals are 
characteristically low signal-to-noise ratio and 
nonstationary, so robust denoising is essential to 
preserve diagnostically relevant structure before 
modelling [6]. In this work, we adopt discrete wavelet 
transform (DWT) denoising, which provides joint time-
frequency localisation and a natural multiresolution 
analysis that matches transient EEG bursts and slow 
rhythms. Compared with fixed resolution Fourier 
filtering, DWT separates transient components into 

scale-localised detail coefficients while concentrating 
slower neural oscillations into coarse approximations, 
enabling selective suppression of artefacts without 
smearing neurophysiological content. Contemporary 
reviews and application studies report that wavelet-
based shrinkage can effectively suppress ocular and 
muscle artefacts and line noise while maintaining the 
morphology of neural rhythms, and they highlight 
wavelet-based denoising as a staple in modern EEG 
pipelines [7], [8], [9], [10]. 

Prior to wavelet-based denoising, raw EEG signals 
were subjected to standard band-pass filtering to 
suppress baseline drift and high-frequency noise 
outside the physiological EEG range. No additional 
notch filtering was applied, as power-line interference 
was not prominent in the recorded data. Discrete 
wavelet transform (DWT) shrinkage was then applied 
to further reduce noise, followed by fixed-length 
window segmentation. For a discrete-time EEG 
channel, the three-level DWT decomposes the signal 
into an approximation and detail component, as 
expressed in Eq. (1). 

𝒙[𝒏] = 𝑨𝑱[𝒏] + ∑ 𝑫𝒋[𝒏]𝑱
𝒋=𝟏   (1) 

where 𝐷𝑗[𝑛] captures oscillatory activity in a dyadic 

sub-band and 𝐴𝐽[𝑛] contains the slower baseline trend 

[29]. Let 𝑑𝑗,𝑘 denote the wavelet coefficient at level 𝑗 

and time index 𝑘. Soft thresholding updates each 

coefficient according to Eq. (2). 

𝑑̃𝑗,𝑘 = 𝑠𝑖𝑔𝑛(𝑑𝑗,𝑘) max (|𝑑𝑗,𝑘| − 𝜆𝑗 , 0) (2) 

with 𝜆𝑗 chosen either by the universal threshold or by 

the BayesShrink rule described below. In this way, 
coefficients with small magnitude, which are likely 
dominated by noise, are shrunk towards zero, whereas 
large coefficients that carry neural information are 
preserved. We adopt an orthogonal 𝑑𝑏4 mother 

wavelet owing to its compact support and smooth 
Daubechies-style regularity, which promotes sparse 
representations of EEG bursts and edges while 
avoiding excessive ringing. Comparative studies on 
EEG denoising consistently report 𝑑𝑏4 and related 

families among the strongest choices for balancing 
fidelity and smoothness, providing a favourable 
accuracy to complexity trade-off [37].  

DWT shrinkage was performed using a db4 wavelet 
with three decomposition levels. Three levels were 
selected to adequately capture the dominant EEG 
frequency bands while avoiding over-decomposition 
that may distort physiologically relevant signal 
components [7], [8], [9], [10]. For each 16-channel 
segment, a three-level Mallat decomposition is applied, 
yielding approximation and detail subbands 
{𝐴3 , 𝐷3, 𝐷2, 𝐷1}. Under a sampling rate of 256 Hz and 

ideal half-band splitting, these levels roughly 
correspond to very high frequency activity dominated 
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by muscle artefacts in 𝐷1, higher beta and low gamma 

activity in 𝐷2, alpha and low beta rhythms in 𝐷3, and 
slower delta to theta activity in 𝐴3. Exact passbands 

depend on the analysis filters, but this octave structure 
is standard in EEG wavelet analyses [29]. The three-
level filter bank and the flow from the raw signal to the 
approximation and detail subbands are illustrated 
schematically in Fig. 2. Noise attenuation operates by 
soft-thresholding the detail coefficients at each level, a 
well-established approach that shrinks small-
magnitude coefficients dominated by noise more than 
large coefficients that likely carry signal. In classical 
wavelet shrinkage, the universal threshold τ is defined 

as given in Eq. (3) [38]. 

λ = σ√2 log 𝑁     (3) 

where 𝑁 is the number of samples in the subband and 

σ is a robust noise estimate computed from the median 

absolute deviation of the finest scale details divided by 

0.6745. BayesShrink refines this idea by adapting λ per 

subband using a generalised Gaussian prior, often 
improving the bias-variance trade-off [39]. In our 

implementation, σ is estimated from 𝐷1 and soft 

thresholds are applied separately at each level. When 
BayesShrink is enabled, ssubband-specificthresholds 
are used; otherwise, a fixed universal threshold is 
applied across 𝐷1 to 𝐷3. The inverse DWT reconstructs 

denoised channels from 𝐴3 and the thresholded details 

{𝐷3, 𝐷2, 𝐷1}. Qualitatively, DWT denoising reduces 

high-frequency fluctuations while preserving slower 
neural rhythms; this can be seen by comparing the raw 
and denoised 16-channel windows in Fig. 3(a) and Fig. 
3(b), plotted with identical amplitude scales. Practically, 
artefacts with strong high-frequency content (muscle, 
abrupt motion) are attenuated mainly in 𝐷1 and 𝐷2, 

while slow ocular drifts and baseline wander contribute 
less to thresholded details after the acquisition band 
limits, so DWT complements the fixed front-end filters 
by adaptively suppressing bursty contaminants in a 

scale-aware manner. EEG workflows that integrate 
wavelet denoising in this way have been shown to 
improve downstream classification and regression (for 
example, depth of anaesthesia indices) without 
compromising temporal precision [40].  

C. Windowing 

After denoising with DWT, each 16-channel EEG 
recording at 256 Hz is segmented into fixed 4-second 
windows with 50 percent overlap, corresponding to 
1,024 samples per window and a hop of 512 samples. 
The choice of a 4-second window provides a balance 
between temporal resolution and contextual coverage, 
allowing multiple cycles of dominant EEG rhythms (e.g., 
theta, alpha, and beta bands) to be captured within each 
segment while maintaining quasi-stationarity. A 50% 
overlap is employed to increase the effective number of 
training samples and ensure smooth transitions between 
adjacent windows, while limiting excessive redundancy 
between segments. This window length balances 
temporal context, capturing multiple cycles of low-
frequency rhythms, with a sufficient number of training 
instances, a trade-off that is commonly adopted in recent 
EEG classification pipelines. Fig. 4 illustrates the 
windowing process, where each window overlaps the 

  
(a) (b) 

Fig. 3. EEG before and after DWT denoising. (a) Raw 16 channel window; (b) DWT denoised window 
after soft thresholding. 

 

 

 

 

 

 
Fig. 2. DWT process overview. A three level Mallat 
tree decomposes each channel into approximation 
and detail coefficients. 
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next by 50 percent to maintain continuity while 
increasing the number of training samples. A recent Q1 
study explicitly selected 4-second windows with 50 
percent overlap to ensure continuity while maintaining 
adequate sample counts for deep models [41]. 
Controlled comparisons also show that overlap-based 
segmentation can increase accuracy relative to non-
overlapped baselines, improving training efficiency and 
robustness in EEG applications [42]. 

Let 𝑥𝑐[𝑛] denote the denoised discrete-time EEG 

signal of channel 𝑐 sampled at 𝐹𝑠 = 256 Hz. We set the 

window length to 𝐿 = 4𝐹𝑠 = 1,024 samples and the hop 

size to 𝐻 =
𝐿

2
= 512 samples for a 50 percent overlap. 

For a recording of length 𝑁𝑠 samples from the subject 𝑠, 
the 𝑚-th window covers indices defined in Eq. (4), with 

the total number of windows determined by Eq. (5). 

𝑛 = 𝑚𝐻, 𝑚𝐻 + 1, … , 𝑚𝐻 + 𝐿 − 1,   (4) 

𝑀𝑠 = ⌊
𝑁𝑠−𝐿

𝐻
⌋ + 1     (5) 

The corresponding multi-channel window is 

represented as a matrix 𝑋𝑠
(𝑚) ∈ ℝ𝐶×𝐿 with 𝐶 = 16 

channels, as defined in Eq. (6). 

𝑋𝑠
(𝑚)(𝑐, 𝑖) = 𝑥𝑐[𝑚𝐻 + 𝑖], 𝑐 = 1, … ,16, 𝑖 = 0, … , 𝐿 − 1.

     (6) 

This construction yields a fixed-size tensor for each 
window that can be directly passed to the subsequent 
heatmap rendering and deep learning stages. For each 
subject, we construct a windowed tensor by stacking all 
channels over each 4-second interval. Any trailing 
fragment shorter than 4 seconds is discarded to maintain 
consistent window shapes. In practice, segmentation is 
implemented by array slicing on the denoised time series 
with a stride of 512 samples, which efficiently realises 
overlapping windows with minimal computational 
overhead. To assess generalisation performance, we 
use 5-fold cross-validation. The data are partitioned into 
five folds, and in each run, four folds are used for training 
and the remaining fold for testing. This practice avoids 

using the same samples for both training and evaluation, 
which can lead to overly optimistic performance 
estimates if not controlled properly [15]. 

D. Heatmap Rendering 

Given a denoised EEG segment 𝑿 ∈ 𝑅𝐶×𝑇 with 𝐶 = 16 

channels and 𝐿 = 1,024 time samples, we render a 

pseudo colour heatmap by mapping time samples to the 
horizontal axis and channels to the vertical axis, then 
applying a standardised colour scale. This direct 
amplitude-to-colour approach follows recent ASD EEG 
work that converts windowed EEG into heatmaps for 
vision backbones [21]. Fig. 5 illustrates the signal-to-
heatmap pipeline. 

Channels are arranged in rows according to the same 
10 20 montage described in Section II A, so that the 
ordering preserves coarse bilateral and topographic 
structure across frontal, temporal, central, parietal, and 
occipital regions [29], [37], [38]. Specifically, the 16 EEG 
channels are arranged along the vertical axis in a fixed 
and reproducible order following the standard 10–20 
electrode naming convention (e.g., Fp1, Fp2, F7, F3, Fz, 
F4, F8, T7, C3, Cz, C4, T8, P7, P3, P4, P8), and this 
ordering is kept consistent across all subjects and 
windows. Although no spatial interpolation is performed, 
this anatomically informed ordering preserves coarse 
anterior–posterior and left–right relationships that can be 
exploited by convolutional neural networks. Each row 
linearly samples the corresponding channel waveform 
across the 4-second window, and columns correspond 
to uniformly spaced time bins. This yields a fixed-
channel-by-time representation suitable for downstream 
vision backbones such as ConvNeXt, Swin, EfficientNet 
B0, GoogLeNet, and ShuffleNet [17]. To ensure 
comparability across images and avoid information 
leakage, colour limits 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are computed only 

from the training fold, either globally or per channel as 
specified a priori, and then applied unchanged to 
validation and test windows in that fold. Given an entry 
𝑋(𝑐, 𝑡), the amplitude is first clipped to the predefined 

 

Fig. 4. Windowing of EEG signal with 50 percent overlap. 
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range according to Eq. (7) and subsequently normalised 
to the interval [0,1] using Eq. (8). 

𝑋̂(𝑐, 𝑡) = min(max(𝑋(𝑐, 𝑡), 𝑣𝑚𝑖𝑛) , 𝑣𝑚𝑎𝑥),   (7) 

𝑋̃(𝑐, 𝑡) =
𝑋̂(𝑐,𝑡)−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
    (8) 

The normalised matrix 𝑋̃ ∈ [0,1]𝐶×𝐿 is finally mapped 

to image intensities via a perceptually uniform colormap 
𝑔: [0,1] → [0,1]3, so that each pixel has an RGB triplet 

𝐼(𝑐, 𝑡) = 𝑔(𝑋̃(𝑐, 𝑡)). A perceptually ordered pseudo-

colour mapping was applied using the jet colormap 
implemented in Matplotlib, where low amplitudes are 
encoded in blue tones and high amplitudes in yellow–
red tones. This choice builds on our prior ASD EEG 
heatmap work and facilitates the visual interpretation of 
amplitude variations across channels and time [21]. 
Fold-wise standardisation in terms of 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 

stabilises learning and prevents target information from 
seeping into preprocessing, and consistent EEG to 
image encodings have been reported to improve deep 
model reliability [17], [18].  

As a concrete example, Fig. 5 shows the conversion 
of a single 4-second, 16-channel EEG window into a 
channel-by-time heatmap. The waveform panel (“DWT 
EEG Signal”) displays the denoised multichannel 
segment arranged in 10 20 orders, while the “Heatmap 
Image” panel shows the corresponding pseudo colour 
representation obtained by mapping each channel to a 
row with global colour limits estimated from training data 
only. Columns encode time samples, and rows encode 
channels, producing a fixed canvas that maintains inter-
channel relationships while exposing temporal patterns 
in a form that is convenient for image models [17], [18]. 

For compatibility with standard computer vision 
backbones pre-trained on ImageNet, the single-channel 
heatmap is replicated across three channels to form an 
RGB image and resized to the backbone input resolution 

(for example, 224 by 224 pixels) using antialiased 
interpolation [20], [22], [24]. We apply conservative 
augmentations that preserve the temporal and spectral 
structure of the signal, such as slight brightness and 
contrast jitter and small cutout, and avoid strong 
geometric warps that could distort time or frequency 
content. This aligns with recent literature showing that 
image like EEG encodings, including heatmaps, 
topographic maps, and connectivity maps, are effective 
inputs for convolutional and transformer-based 
classifiers [17], [18], [43], [44]. After rendering, the RGB 
heatmaps serve as inputs for the heavy and light vision 
backbones described in the following section. 

E. Deep Learning Architectures 

The proposed framework uses five pretrained deep 
learning architectures that are adapted to the channel-
by-time EEG heatmaps: one heavyweight convolutional 
model (ConvNeXt Tiny), one heavyweight transformer-
style model (Swin Transformer Tiny), and three 
lightweight convolutional networks (EfficientNet B0, 
GoogLeNet, and ShuffleNetV2 0.5x). Rather than 
proposing a new architecture from scratch, the present 
work focuses on how these complementary inductive 
biases behave on a unified EEG to heatmap pipeline and 
how heavy light decision fusion can exploit their 
differences under strict cross-validation [22], [23], [24], 
[25], [26].  

All architectures receive the same type of input: 
224 𝑥 224 RGB images obtained from 4-second 

windows as described before. Conceptually, the 
horizontal axis encodes time and the vertical axis 
encodes ordered EEG channels, so that convolutional 
kernels or local attention windows can jointly capture 
intra-channel temporal patterns and inter-channel 
interactions. By keeping the input representation fixed 
and normalising the classifier heads, we attribute 

 

Fig. 5. Signal to heatmap pipeline. DWT denoised EEG windows are mapped to channel by time matrices, 
normalised using training derived colour limits, and rendered as pseudo colour heatmaps that preserve 
the channel order across rows and the temporal evolution along columns. 
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differences in performance primarily to the architectures 
and their interaction with the EEG-specific image 
structure, rather than to arbitrary changes in 
downstream layers.  

1. Convolutional backbones and inductive bias for 
EEG heatmaps 

We adopt four convolutional families to span a range of 
model capacities and computational costs. 

a) EfficientNet B0 uses depthwise separable MBConv 
blocks with squeeze and excitation and a 
compound scaling rule. Small 3 × 3 kernels in early 

layers primarily capture local temporal changes 
within channels and short-range correlations 
between neighbouring rows in the heatmap, while 
deeper layers aggregate progressively larger 
temporal contexts. Prior work has reported strong 
performance of EfficientNet B0 in EEG based 
seizure detection and other biomedical signal 
classification tasks [25]. 

b) GoogLeNet (Inception v1) employs multi branch 
Inception modules where 1 × 1, 3 × 3, and 5 × 5 

filters operate in parallel. On channel by time 
heatmaps, these branches can be interpreted as 
capturing short temporal edges (1 × 1 and 3 × 3) 

and broader temporal structures spanning multiple 
cycles of low frequency oscillations (5 × 5), while 

the across row dimension implicitly encodes 
interactions between nearby electrodes. The multi 
scale design is thus well aligned with the multiscale 
nature of EEG rhythms and artefacts [22], [23]. 

c) ShuffleNetV2 0.5x is a highly efficient architecture 
built from channel split, channel shuffle, and 
depthwise separable convolutions. The channel 
shuffle operation encourages information mixing 
across feature groups, which is important when 
each feature channel corresponds to combinations 
of EEG channels and time. Because of its small 
parameter count and low multiply accumulate 
operations, ShuffleNetV2 is an attractive candidate 
for resource constrained ASD screening devices 
that require near real time inference [24]. 

d) ConvNeXt Tiny modernises the ResNet style 
design with large kernel depthwise convolutions 
(7 × 7), inverted bottlenecks, and simplified stage 

wise downsampling [25], [26]. Large depthwise 
kernels along the time axis allow ConvNeXt to 
integrate information over longer temporal horizons 
at relatively shallow depths, which can be beneficial 
for detecting slower oscillatory trends and cross-
channel patterns. In preliminary experiments, 
ConvNeXt consistently ranked among the 
strongest heavy backbones on ASD heatmaps in 
terms of F1 score, underscoring its role as a 
primary heavy model in the fusion stage. 

In all convolutional cases, we retain the ImageNet 
pretrained stem and block structure and replace the 
original classification layer with a lightweight EEG-
specific head. The terminal feature map is processed by 
global average pooling, followed by a 256 unit fully 

connected layer with ReLU activation and dropout 
(dropout rate in {0.2, 0.3} selected once on the validation 

folds and then fixed across models), and finally by a fully 
connected layer with two output logits (ASD and TD). 
This shared head design, summarised in Table 1 and 
Fig. 6, standardises classifier capacity across 
architectures and facilitates fair comparison and fusion. 

2. Swin Transformer Tiny for structured EEG images 

To complement the convolutional encoders, we include 
Swin Transformer Tiny as a hierarchical transformer-
style backbone for EEG heatmaps [18], [22], [23]. The 
modified Swin-based classifier used in this work is 
summarised in Fig. 7. Swin first divides the 224 × 224 

RGB image into non-overlapping patches (for example 
4 × 4 pixels), projects each patch into a low-dimensional 

embedding, and then applies multi-head self-attention 
within fixed-size windows (for example 7 × 7 patches). 

Between stages, windows are shifted and patches are 
merged, creating a pyramid of feature maps with 
decreasing spatial resolution and increasing channel 
depth. On channel-by-time heatmaps, local attention 
windows cover short temporal spans and small groups 
of neighbouring channels, allowing Swin to adaptively 
weight interactions between electrodes across time 

Table 1. CNN backbones and classifier heads used in this study. 

Layer 
Number 

Layer Type 
Size Output 

EfficientNet-B0 GoogLeNet ShuffleNetV2 ConvNeXt 

0 Input layer 224 × 224 × 3 

1 
State-of-the-art 

convolution layers 
7 × 7 × 1280 7 × 7 × 1024 7 × 7 × 1024 7 × 7 × 768 

2 
Global average 
pooling (GAP) 

1280 1024 1024 768 

3 
Dense layer (256, 

ReLU) 
256 

4 Fully connected layer 2 
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without the rigid locality of convolutional kernels. The 
shifted window mechanism then enables information 
flow across adjacent temporal blocks and channel bands 
while keeping computational cost subquadratic in the 
number of patches. The final stage feature map is 
pooled to obtain a 768 dimensional representation, 

which is fed to a fully connected layer with two output 
units. As with the convolutional models, we start from 
ImageNet pretrained weights and fine-tune the entire 
network on the ASD EEG heatmaps.  

3. Training protocol and hyperparameter selection 

To address concerns about fairness and replicability in 
comparative deep learning studies, all five architectures 
are trained under a unified protocol with minimal, 
explicitly documented hyperparameter tuning [14], [15], 
[29]. For each cross-validation fold:  
a) Inputs are 224 × 224 RGB heatmaps standardised 

using fold-specific training statistics. 
b) We use the AdamW optimizer with an initial learning 

rate in {1𝑒 − 4, 3𝑒 − 4} and weight decay 1𝑒 − 4. A 

cosine learning rate schedule with linear warmup 
over the first five epochs is applied. The learning 
rate setting is selected once on validation folds for 
a reference architecture, then reused unchanged 
for the others. 

c) Mini batches contain 32 heatmaps, drawn by 
sampling windows uniformly from the training 
subjects. To reduce class imbalance at the window 
level, ASD and TD windows are oversampled so 
that mini-batches are approximately balanced. 

d) Training is run for up to 80 epochs with early 
stopping based on validation F1 score, with a 
patience of 10 epochs. The model state that 
achieves the highest validation F1 is used for 
evaluation on the held out test fold. 

e) Random seeds for weight initialisation and data 
shuffling are fixed and reported so that the 
experiments are reproducible. 

No model-specific tricks such as custom learning rate 
schedules, auxiliary heads, or aggressive data 
augmentation are employed. This design choice 
intentionally trades off some potential peak performance 
for transparency k comparability: all architectures are 
exposed to the same optimisation regime, data 
preprocessing, and stopping criteria, enabling 
interpretation of differences in ASD detection 
performance in terms of architectural biases rather than 
idiosyncratic training recipes. 

F. Decision Level Fusion 

 

Fig. 7. Modified transformer-based architecture used in this study. 

 

 

 

 

 

 

Fig. 6. Modified convolutional neural network (CNN) architectures used in this study. 
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To balance accuracy and efficiency while exploiting 
complementary inductive biases, we integrate one 
heavyweight architecture with one lightweight 
architecture at the decision level using weighted soft 
voting, a strategy that has been widely adopted in 

biomedical ensemble learning [26], [27], [28]. Let 𝑃𝑘
𝐻(𝑥) 

denote the posterior probability for class 𝑘 ∈ {𝐴𝑆𝐷, 𝑇𝐷} 
produced by a heavyweight model given an input 

heatmap 𝑥, and let 𝑃𝑘
𝐿(𝑥) denote the corresponding 

posterior produced by a lightweight model. The fused 
posterior probability is then obtained via weighted soft 
voting, as defined in Eq. (9), where the fusion weight 𝛼 ∈
[0,1] controls the relative contribution of the heavyweight 

and lightweight branches. The final class label is 
determined by selecting the class with the maximum 
fused posterior probability, as given in Eq. (10). 

𝑃𝑘
𝐹(𝑥) = 𝛼𝑃𝑘

𝐻(𝑥) + (1 − 𝛼)𝑃𝑘
𝐿(𝑥),   (9) 

ŷ(𝑥) = arg max
𝑘

𝑃𝑘
𝐹(𝑥).    (10) 

Here, the heavyweight branch is either ConvNeXt Tiny 
or Swin Transformer Tiny, and the lightweight branch is 
one of EfficientNet B0, GoogLeNet, or ShuffleNetV2 
0.5x, reflecting the heavy versus light families discussed 
before [22], [23], [24], [25], [26]. Within each cross-
validation fold, the fusion weight 𝛼 is selected on the 

validation split only, using a coarse grid 𝛼 ∈ {0.3,0.5,0.7} 
to maximise the mean F1 score, in line with common 
practice for tuning ensemble weights on held-out data 
[26], [27]. The selected 𝛼 is then fixed for the 

corresponding test split, which prevents information from 
the test subjects from influencing the fusion rule and 
avoids evaluation bias [14], [15]. Fig. 8 illustrates the 
special case 𝛼 = 0.5, where heavy and light posteriors 

are combined with equal weight. 

In this study, we evaluate six heavy-light pairs using 
the same preprocessing and training pipeline as the 
single architectures, namely ConvNeXt Tiny + 

EfficientNet B0, ConvNeXt Tiny + GoogLeNet, 
ConvNeXt Tiny + ShuffleNetV2 0.5x, Swin Tiny + 
EfficientNet B0, Swin Tiny + GoogLeNet, and Swin Tiny 
+ ShuffleNetV2 0.5x. These combinations are chosen to 
probe how pairing different inductive biases and 
capacities affects ASD detection on the same EEG to 
heatmap representation [22], [23], [24], [25]. For each 
pair, fused posteriors are computed for all windows in 
the test fold and converted to hard labels via ŷ(𝑥). We 

construct confusion matrices on the held out test data 
and derive Accuracy, Precision, Recall or Sensitivity, 
Specificity, and F1 score, following standard evaluation 
practice in EEG based classification and medical image 
analysis [29], [41], [45]. Metrics are then averaged 
across folds. Ties in hard decisions are broken by the 
larger fused posterior value. Unless otherwise stated, we 
do not apply post hoc calibration on test predictions; 
when calibration is explored, it is fitted on validation 
outputs only, consistent with recommended procedures 
for probability calibration in biomedical models [30], [45]. 

Decision-level fusion in probability space has been 
shown to improve robustness and accuracy in various 
biomedical signal and image classification tasks, 
including EEG, cardiac sounds, and multimodal medical 
imaging [26], [27], [28], [30]. Studies on medical imaging 
and multimodal decision fusion report that weighted soft 
voting between heterogeneous learners often yields 
better performance than any single model without 
substantially increasing model complexity [31], [32], [44], 
[45]. In the context of EEG-based ASD detection, pairing 
a heavyweight architecture with a lightweight encoder in 
this manner aims to retain high sensitivity on ASD 
windows while controlling false positives and 
maintaining an acceptable computational footprint for 
potential deployment [24], [25], [27].  

G. Cross Validation and Evaluation Metrics 

We evaluate all architectures using K-fold cross-
validation with K = 5 and class stratification between 
ASD and TD, a protocol widely adopted in EEG-based 
diagnostic studies to obtain stable performance 
estimates from limited cohorts [14], [15], [43]. The overall 
scheme is illustrated in Fig. 9, where each fold is used 
once as the test set, while the remaining folds form the 
training and validation pools. The 16 available subjects 
are first partitioned into five folds, with each fold 
containing three or four subjects, while preserving the 
overall ASD-to-TD ratio. In each run, three folds are 
used for training, one for validation, and one for testing; 
the roles of the folds are rotated until every subject 
appears in the test set exactly once. Splits are defined at 
the subject level, and all windows belonging to a given 
subject are assigned to the same fold, which avoids 
identity leakage between training, validation, and test 
data and addresses concerns raised in recent work on 
data leakage in psychiatric EEG deep learning [14], [16], 
[17]. 

 

Fig. 8. Decision level fusion between heavy 
and light models. Heavy and light posteriors 
are merged by weighted soft voting with 
fusion weight 𝜶 to obtain the final ASD versus 

TD decision. 
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For each fold, all data-dependent preprocessing 
parameters are estimated from the training portion only 
and then applied unchanged to the test. This includes 
the wavelet thresholding configuration, normalisation 
factors, and the colour limits used to render EEG 
heatmaps, consistent with recommendations for 
leakage-aware EEG preprocessing [6], [18]. All deep 
learning architectures ingest identically preprocessed 
224 𝑥 224 RGB heatmaps with the same augmentation 

policy. Optimiser, batch size, maximum number of 
epochs, and regularisation settings are fixed a priori and 
shared across architectures so that performance 
differences can be attributed primarily to 
representational capacity and inductive bias rather than 
to model-specific optimisation tricks [29], [45], [46]. This 
experimental design follows recent comparative studies 
in biomedical signal classification and multimodal fusion, 
where unified training pipelines are emphasised to 
ensure fair model comparison [28], [44], [47], [48]. 

With ASD treated as the positive class, performance 
is evaluated using standard metrics derived from the 
confusion matrix of each test fold. Let true positives (TP) 
denote the number of ASD windows correctly classified 
as ASD, true negatives (TN) denote the number of TD 
windows correctly classified as TD, false positives (FP) 
correspond to TD windows incorrectly classified as ASD, 
and false negatives (FN) correspond to ASD windows 
incorrectly classified as TD. Based on these quantities, 
Accuracy and F1-score are computed using Eq. (11) and 

Eq. (12), while Precision, Recall (Sensitivity), and 
Specificity are defined in Eq. (13), Eq. (14), and Eq. (15). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP + TN + FP + FN
   (11) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (12) 

To better characterise clinical relevance, we also report 
Precision, Recall, or Sensitivity, and Specificity, which 
distinguish between false positives and false negatives 
and are standard in diagnostic performance 
assessment: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP +  FP 
   (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP +  FN
    (14) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP 
    (15) 

These metrics are computed for each architecture and 
each fusion pair on every test fold. The final reported 
performance is given as the mean plus or minus 
standard deviation across the five folds, as is common 
in EEG and medical imaging benchmarks [29], [41], [43]. 
In the results section, we additionally analyse confusion 
matrices and perform paired statistical comparisons 
across folds, for example, using repeated measures 
analysis of variance and adjusted pairwise tests, to 
assess whether observed differences between single 
architectures and heavy-light fusions are likely to be due 
to chance [44], [45], [46], [47], [48]. 

 

III. Result 
A. Single Model Performance 

Table 2 summarises the 5-fold cross-validation 
performance of the five individual architectures on the 
EEG heatmaps. For each model, we report the mean 
and standard deviation of Accuracy, Precision, Recall, 
Sensitivity, Specificity, and F1 score across the test 
folds, with ASD treated as the positive class. These 
figures serve as the baseline against which the heavy 
light fusion schemes in the next subsection are 
evaluated. Among the single models, ConvNeXt Tiny 
attains the best overall performance, with an accuracy of 
around 97.25 ± 0.19 percent and an F1 score of 97.10 ± 

 

Fig. 9. 5-fold cross validation scheme. All 
data are partitioned into five disjoint folds. 

 

 

 

 

 

Table 2. 5-Fold Test Performance of Single Backbones (mean ± SD). 

Model 
Model 
Size 
(MB) 

Param 
(M) 

FLOPs Acc (%) P (%) R (%) S (%) F1 (%) 

EfficientNet 16  ~5.3 ~0.39 94.90 ± 0.34 96.81 ± 0.29 92.30 ± 0.64 97.25 ± 0.25 94.50 ± 0.38 

GoogleNet 22.1 ~6.8 ~1.5 95.09 ± 0.30 97.85 ± 0.21 91.67 ± 0.62 98.18 ± 0.19 94.66 ± 0.34 

ShuffleNet 1.5 ~1.4 ~0.14 94.48 ± 0.18 94.52 ± 0.18 93.82 ± 0.47 95.08 ± 0.19 94.17 ± 0.20 

SwinT 107.8 ~28.3 ~4.5 96.34 ± 0.13 96.35 ± 0.20 95.93 ± 0.22 96.72 ± 0.18 96.14 ± 0.14 

ConvNeXt 108.7 ~28.6 ~4.64 97.25 ± 0.19 97.39 ± 0.28 96.81 ± 0.17 97.65 ± 0.25 97.10 ± 0.20 
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0.20 percent. Swin Transformer Tiny forms the second 
tier, with an accuracy of 96.34 ± 0.13 percent and an F1 
score of 96.14 ± 0.14 percent. In both cases, Recall on 
ASD windows are close to or above 95 percent, 
indicating that the heavyweight architectures tend to 
miss fewer ASD segments while maintaining high 
Specificity on TD windows. The lightweight architectures 
show a slightly different profile. EfficientNet B0 and 
GoogLeNet cluster in the mid 94 percent range for F1 
score: EfficientNet B0 reaches 94.50 ± 0.38 percent, 
with a relatively balanced Precision and Recall, whereas 
GoogLeNet achieves the highest Precision among the 
light models (97.85 ± 0.21 percent) at the cost of lower 
Recall (91.67 ± 0.62 percent). ShuffleNetV2 0.5x yields 
the lowest F1 score of 94.17 ± 0.20 percent, driven 
mainly by modestly reduced Recall, but its Accuracy and 
F1 remain within about half a percentage point of the 
other lightweight models. 

Table 2 also lists model sizes, highlighting the trade-
off between performance and computational footprint. 
ConvNeXt Tiny and Swin Tiny are the largest models, 
with sizes around 108.7 MB and 107.8 MB, respectively, 
whereas ShuffleNetV2 0.5x is by far the most compact 
at 1.5 MB. EfficientNet B0 (16 MB) and GoogLeNet (22.1 
MB) occupy intermediate positions. The fact that 
EfficientNet B0 and GoogLeNet approach the F1 scores 
of Swin Tiny, and lie within roughly 2 percentage points 
of ConvNeXt Tiny, suggests that the proposed DWT plus 
heatmap preprocessing pipeline provides a strong and 
consistent input representation across architectures, 
rather than relying solely on large model capacity to 
extract useful features. In addition to classification 
performance, Table 2 also reports quantitative 
measures of computational footprint in terms of the 
number of parameters and theoretical FLOPs for each 
single backbone. As expected, lightweight models such 
as ShuffleNetV2 and EfficientNet-B0 exhibit 
substantially lower parameter counts (≈1–5 M) and 
FLOPs (<0.5 GFLOPs), whereas heavyweight 
architectures (ConvNeXt Tiny and Swin Transformer 
Tiny) operate in the range of ≈28 M parameters and ≈4.5 
GFLOPs. These results provide a quantitative basis for 
assessing the accuracy–efficiency trade-off, showing 
that the proposed EEG-to-heatmap representation 

enables competitive performance even for architectures 
with markedly reduced computational complexity. 

Overall, the single model results establish a clear 
hierarchy and reveal complementary strengths. 
Heavyweight architectures provide the highest F1 
scores and the best sensitivity to ASD windows, but at a 
higher computational cost, while lightweight 
architectures offer competitive performance with much 
smaller footprints. This motivates the decision-level 
fusion experiments in the next subsection, where we 
investigate whether pairing heavy and light models can 
further improve robustness and F1 score without 
incurring the full cost of deploying multiple independent 
systems. 

B. Heavy Light Fusion Performance 

Table 3 summarises the 5-fold cross-validation 
performance of the six heavy-light fusion pairs. For each 
pair, we report the same metrics as for the single 
architectures, namely Accuracy, Precision, Recall or 
Sensitivity, Specificity, and F1 score, averaged over the 
test folds with ASD as the positive class. The best heavy 
light combination is ConvNeXt + ShuffleNet, which 
reaches 99.56 ± 0.05% Accuracy and 99.53 ± 0.05% F1 
across folds. This represents an absolute gain of about 
2.4 percentage points in F1 compared with the 
ConvNeXt single model, indicating that soft voting 
recovers a nontrivial number of misclassified windows. 
Importantly, this improvement does not come at the cost 
of Precision: for ConvNeXt-based fusions, Precision 
remains at or above 99%, while Recall and Specificity 
both move into the high 99% range. Among the Swin-
based pairs, Swin + ShuffleNet yields the strongest 
result, with Accuracy and F1 around 98.8% and 98.7%, 
respectively, lifting the transformer baseline into a 
regime comparable with the best single convolutional 
backbone. Beyond performance gains, Table 3 further 
extends this analysis by reporting the total parameter 
count and FLOPs of each heavy–light fusion model, 
computed as the sum of the two constituent backbones. 
This explicitly quantifies the additional computational 
cost introduced by decision-level fusion. Notably, the 
best-performing fusion (ConvNeXt + ShuffleNet) 
increases computational complexity only marginally 
compared with ConvNeXt Tiny alone (≈4.64 vs. ≈4.50 

Table 3. 5-Fold Test Performance of Heavy–Light Fusion (α = 0.5), (mean ± SD). 

Model 
Model 
Size 
(MB) 

Param 
(M) 

FLOPs Acc (%) P (%) R (%) S (%) F1 (%) 

ConvNeXt + EffNet 124.7 ~33.9 ~4.89 99.19 ± 0.08 99.17 ± 0.13 99.12 ± 0.13 99.25 ± 0.12 99.14 ± 0.09 

ConvNeXt + GoogleNet 130.8 ~35.4 ~6.00 99.21 ± 0.10 99.31 ± 0.11 99.02 ± 0.17 99.38 ± 0.10 99.17 ± 0.10 

ConvNeXt + ShuffleNet 110.2 ~30.0 ~4.64 99.56 ± 0.05 99.46 ± 0.20 99.61 ± 0.13 99.51 ± 0.19 99.53 ± 0.05 

Swin + EffNet 123.8 ~33.6 ~4.89 98.70 ± 0.10 98.58 ± 0.20 98.68 ± 0.13 98.71 ± 0.18 98.63 ± 0.10 

Swin + GoogleNet 129.9 ~35.1 ~6.00 98.60 ± 0.14 98.58 ± 0.20 98.48 ± 0.20 98.71 ± 0.19 98.53 ± 0.15 

Swin + ShuffleNet 109.3 ~29.7 ~4.64 98.77 ± 0.21 98.63 ± 0.22 98.77 ± 0.24 98.76 ± 0.20 98.70 ± 0.22 
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GFLOPs), while yielding a substantial improvement in 
F1-score of approximately 2.4 percentage points. This 
demonstrates that the observed performance gains are 
achieved at a relatively low computational overhead. 

To assess whether the performance improvement 
from heavy–light fusion is statistically significant, we 
conducted paired statistical tests across the five cross-
validation folds comparing the strongest single 
backbone (ConvNeXt Tiny) and the best fusion model 
(ConvNeXt + ShuffleNet). A paired t-test revealed that 
the fusion model significantly outperforms the single 

model in both Accuracy (𝑝 <  1 × 10⁻⁵) and F1-score 

(𝑝 <  1 × 10⁻⁵). A complementary Wilcoxon signed-

rank test showed consistent directional improvements 
across all folds, although statistical significance was not 
reached due to the small number of folds. These results 
indicate that the observed gains from decision-level 
fusion are systematic rather than attributable to chance. 

A consistent pattern in Table 3 is that every heavy light 
pair improves over its lightweight component on F1 and 
Recall. Even when a fusion does not strictly surpass the 
strongest heavy architecture across all metrics,  

it typically narrows the gap while retaining a footprint 
much closer to that of the light model. Standard 
deviations across folds remain small (on the order of a 
few tenths of a percentage point), suggesting that the 
gains from fusion are stable rather than driven by a 
particular split. From a deployment perspective, the 
model size column in Table 3 highlights the practicality 
of the design. Among ConvNeXt fusions, the top-scoring 
ConvNeXt + ShuffleNet is also the most compact, at 
about 110.2 MB, compared with 124.7 MB for ConvNeXt 
+ EfficientNet and 130.8 MB for ConvNeXt + 
GoogLeNet. Decision level aggregation itself adds only 
a constant time average over two posterior vectors, so 
inference cost is dominated by the two forward passes. 

The resulting operating point of “one heavy + one light” 
therefore offers a favourable accuracy versus footprint 
trade-off compared with either a single heavy model or 
heavier ensembles. 

Overall, the fusion results indicate that combining 
heavy and light models at the probability level is not 
redundant with simply choosing the best single 
backbone. In several configurations, heavy light pairs 
establish new best values for F1 and Recall, and even 
when improvements are modest, they are achieved with 
negligible extra training effort and minimal additional 
runtime cost. This motivates a more detailed 
examination of confusion matrices and error patterns in 
the next subsection to clarify how fusion alters false 
negative and false positive profiles relative to the best 
single model. 

C. Confusion Matrices 

We analyse confusion matrices for the best single 
backbone (ConvNeXt Tiny) and the best heavy-light pair 
(ConvNeXt + ShuffleNet), as shown in Fig. 10, to clarify 
how fusion modifies the classifiers' error profiles. The 
figure displays confusion matrices aggregated across 
the five test folds for both models. As illustrated in Fig. 3, 
DWT-based denoising substantially suppresses high-
frequency artefacts while preserving the underlying 
oscillatory structure of the EEG signals. Since the 
proposed heatmap representation is directly constructed 
from these denoised signals, improvements in signal 
quality yield cleaner, more structured time–channel 
images for downstream deep learning. This 
preprocessing step, therefore, provides a more stable 
and informative input for the classifiers, which is 
reflected in the error patterns analysed below. 

For the ConvNeXt Tiny baseline, the pooled confusion 
matrix shows that the model correctly classifies 1,974 
ASD windows and 2,203 TD windows, while 66 ASD 

 
Fig. 10. Per-fold confusion matrices (5-fold). Top row: ConvNeXt + ShuffleNet (α = 0.5); bottom row: 
ConvNeXt. 
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windows are incorrectly labelled as TD (false negatives) 
and 53 TD windows are incorrectly labelled as ASD 
(false positives). These counts correspond to an 
Accuracy of 97.23 percent, a precision of 97.39 percent, 
a recall of 96.76 percent, a specificity of 97.65 percent, 
and an F1 score of 97.07 percent, consistent with the 
mean values reported in Table 2. The dominant residual 
error mode is therefore ASD windows misclassified as 
TD, which is undesirable in a screening setting because 
it implies missed ASD segments. When ConvNeXt is 
fused with ShuffleNet, the pooled confusion matrix 
changes in two important ways. First, the number of 
correctly detected ASD windows increases to 2,027, 
while ASD windows misclassified as TD drop from 66 to 
8. Second, the number of correctly identified TD 
windows rises to 2,242, with TD windows misclassified 
as ASD decreasing from 53 to 11. In metric form, the 
fused model achieves an accuracy of 99.56 percent, a 
precision of 99.46 percent, a recall of 99.61 percent, a 
specificity of 99.51 percent, and an F1 score of 99.53 
percent, in line with Table 3. The large reduction in false 
negatives, accompanied by a simultaneous reduction in 
false positives, explains the observed gains in both 
sensitivity and specificity. Across the six heavy light 
combinations, a similar qualitative pattern is observed in 
the corresponding confusion matrices. Every fusion 
reduces the number of false negatives relative to its 
lightweight component and typically narrows the gap to 
the corresponding heavyweight architecture. In Swin-
based pairs, the absolute reduction in errors is smaller 
than in ConvNeXt-based fusions, but still sufficient to lift 
the transformer baseline into the performance regime of 
the best single convolutional backbone. These 
observations suggest that the heavy and light models 
make partially complementary errors on EEG heatmaps, 
and that probability level fusion leverages this 
complementarity rather than simply replicating the 
behaviour of the stronger single model. Taken together, 
the confusion matrix analysis confirms that the 
improvements reported in Table 2 and Table 3 are 
primarily driven by a reduction in missed ASD windows, 
with only a small residual change in false alarms. This 
error profile is consistent with the intended use of the 
models as decision support tools for ASD screening, 
where prioritising high Recall while maintaining high 
Specificity is more valuable than maximising overall 
accuracy alone.  

 

IV. Discussion 

The results in this study show that the proposed DWT-
based preprocessing and heatmap encoding pipeline, 
combined with modern deep learning architectures, 
yields high performance for ASD detection on the KAU 
EEG dataset. Under 5-fold cross-validation, the best 
single backbone, ConvNeXt Tiny, achieved an 
Accuracy of about 97.25 ± 0.19 percent and an F1 

score of about 97.10 ± 0.20 percent, with a recall on 
ASD windows close to or above 95 percent. The best 
heavy-light fusion, ConvNeXt + ShuffleNet, further 
improved performance to approximately 99.56 ± 0.05 
percent Accuracy and 99.53 ± 0.05 percent F1, with 
both sensitivity and specificity in the 99 percent range. 
These gains were obtained under the same 
preprocessing and training protocol, indicating that the 
combination of wavelet denoising, windowed heatmap 
representation, and probability level fusion can 
significantly improve ASD EEG classification beyond a 
single strong backbone.  

Importantly, the inclusion of explicit computational 
metrics in Table 2 and Table 3 allows a more objective 
interpretation of the accuracy–efficiency trade-off. 
While heavyweight backbones provide the strongest 
single-model performance, the proposed heavy–light 
fusion strategy achieves superior accuracy with only a 
modest increase in computational footprint. In 
particular, pairing a high-capacity backbone with an 
ultra-light model such as ShuffleNet preserves most of 
the efficiency advantages of lightweight architectures, 
while substantially reducing missed ASD windows. This 
balance is especially relevant for practical deployment 
scenarios, where computational resources may be 
constrained. 

Although the reported metrics are computed at the 
window level, clinical diagnosis is ultimately made at 
the subject level. In practice, window-level predictions 
can be aggregated into a subject-level decision using 
simple, interpretable rules, such as majority voting or 
averaging across all windows for a subject. Given the 
high consistency of window-level predictions observed 
in this study, such aggregation is expected to stabilise 
subject-level decisions and reduce the impact of 
sporadic misclassified windows. A systematic 
evaluation of subject-level aggregation strategies is an 
important direction for future work toward clinical 
deployment. 

The single-model results in Table 2 suggest a clear 
hierarchy consistent with the architectures' 
representational capacity. Heavyweight models, 
ConvNeXt Tiny and Swin Transformer Tiny, 
consistently occupy the upper end of the performance 
range, with F1 scores in the mid- to high-90s and 
relatively high Recall on ASD windows. This indicates 
that deeper hierarchies with larger effective receptive 
fields can capture more complex spatial-temporal 
patterns in the EEG heatmaps, echoing previous 
observations in medical imaging and physiological 
signal classification [21], [22], [24], [25], [39]. 
Lightweight architectures, particularly EfficientNet B0 
and GoogLeNet, achieve F1 scores around 94 to 95 
percent, only a few percentage points below Swin and 
within roughly 2 percentage points of ConvNeXt, while 
using far fewer parameters. ShuffleNetV2 0.5x 
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maintains a slightly lower F1 score but remains 
competitive given its extremely small footprint. This 
pattern suggests that the proposed DWT plus heatmap 
preprocessing pipeline provides a robust input 
representation that all architectures can exploit, rather 
than requiring highly specialised models to extract 
useful EEG features. 

The heavy light fusion results in Table 3 refine this 
picture by showing that combining one heavy and one 
light architecture is not redundant with simply picking 
the best single model. For the strongest pair, ConvNeXt 
+ ShuffleNet, fusion improves F1 by about 2.4 
percentage points relative to ConvNeXt alone and 
raises Accuracy, Recall, and Specificity into the high 99 
percent range. Swin-based pairs show similar trends, 
with Swin + ShuffleNet lifting the transformer baseline 
into a regime comparable with the best single 
convolutional backbone. Importantly, these 
improvements are achieved without individually tuning 
the architectures for each fusion and with only a simple 
weighted soft voting scheme. This behaviour is 
consistent with ensemble learning theory and prior 
biomedical studies where probability level fusion 
between heterogeneous classifiers has been shown to 
reduce variance and correct complementary errors 
[25], [26], [27], [42], [44], [46]. 

The confusion matrix analysis in Section III-C helps 
explain how these numerical gains arise. For 
ConvNeXt Tiny, the pooled confusion matrix shows that 
residual errors are dominated by ASD windows 
misclassified as TD, leading to a small but non 
negligible number of false negatives. When ConvNeXt 
is fused with ShuffleNet, the number of correctly 
detected ASD windows increases and both false 
negatives and false positives are substantially reduced. 
As a result, F1, Recall, and Specificity all increase 
simultaneously, rather than trading sensitivity against 
specificity. Similar, though smaller, improvements are 
observed across the other heavy light combinations. 
These patterns suggest that the light models do not 
simply replicate the decisions of the heavy 
architectures; instead, they introduce alternative 
decision boundaries that help recover difficult ASD 
windows and filter out spurious alarms on TD windows, 
especially under the DWT denoised and heatmap 
encoded input. 

Although a systematic window-level error attribution 
is beyond the scope of this study, the confusion matrix 
trends indicate that heavy and light models exhibit 
partially complementary error patterns. Heavy 
backbones emphasise global temporal coherence, 
whereas lightweight models preserve sensitivity to local 
variations. Their combination at the decision level, 
therefore, enables correction of missed ASD windows 
that would otherwise persist in a single-model setting. 

From a signal-processing perspective, the strong 
performance of all models supports the use of discrete 
wavelet transform denoising as an effective front-end 
for ASD EEG classification. Wavelet shrinkage, as 
implemented here, reduces high frequency artefacts 
and power line noise while preserving slower oscillatory 
components that are known to be relevant in ASD and 
other neuropsychiatric conditions. In addition, mapping 
multichannel windows into channel by time heatmaps 
allows general purpose vision architectures to exploit 
both local temporal patterns and inter channel 
relationships. This is in line with studies that convert 
EEG into topographic maps, spectrograms, or 
connectivity images for deep learning-based diagnosis. 
The present work shows that even a relatively simple 
amplitude based heatmap, without explicit spectral or 
connectivity features, can support high performance 
when combined with a consistent denoising and cross 
validation protocol. 

Compared with alternative EEG-to-image 
encodings such as topographic maps, spatio-spectral 
representations, or functional connectivity images, the 
proposed channel-by-time heatmap retains the raw 
temporal dynamics of each channel without imposing 
additional modelling assumptions. Spectral or 
connectivity-based representations require predefined 
frequency decompositions or pairwise interactions, 
which may obscure transient temporal patterns or 
introduce bias under limited data conditions. In 
contrast, the channel-by-time encoding preserves fine-
grained temporal structure across all channels and 
allows convolutional and transformer-based vision 
backbones to learn relevant temporal and inter-channel 
relationships directly from the data. The strong 
performance observed in this study suggests that, 
when combined with robust denoising and leakage-
aware validation, this simple non-spectral 
representation provides a favourable balance between 
expressiveness, data efficiency, and model generality. 

Compared with earlier ASD EEG work, the 
proposed framework extends wavelet-based pipelines 
that relied on handcrafted features and shallow 
classifiers, and complements recent deep learning 
approaches based on spectrograms or connectivity 
maps. Previous studies using DWT or stationary 
wavelet transform with Fisher linear discriminant 
analysis, support vector machines, or similar classifiers 
reported promising separation between ASD and 
control groups on the same KAU cohort and related 
datasets. Other work has focused on learned 
representations from spectro temporal images or 
functional connectivity matrices, often using segment 
level validation schemes that risk data leakage. In 
contrast, this study uses wavelet denoising, fixed 
length overlapping windows, and leakage aware cross 
validation with explicit control over model capacity and 
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training conditions, and shows that modern CNN and 
transformer architectures, together with heavy light 
fusion, can achieve very high F1 scores on the KAU 
dataset while offering a clear analysis of accuracy 
versus computational footprint. 

To place these findings in the context of recent ASD 
EEG work on the same cohort, Table 4 summarises 
representative pipelines and their reported accuracies 
on the KAU dataset. Early approaches that combined 
Butterworth filtering, independent component analysis, 
and k nearest neighbours reached about 85.4 percent 
accuracy [49], providing an initial machine learning 
baseline. Subsequent methods based on continuous 
wavelet transform features with support vector 
machines and spectrogram or short time Fourier 
transform representations with classical classifiers 
reported accuracies around 95 to 95.25 percent [12], 
[50]. The stationary wavelet-transform plus Fisher 
linear discriminant analysis framework in [13] achieved 
about 95 percent accuracy on the KAU data under a 
subject wise split, demonstrating the effectiveness of 
wavelet features with shallow models. In comparison, 
the proposed DWT plus heatmap pipeline combined 
with heavy light fusion attains approximately 99.56 
percent accuracy under subject wise 5-fold cross 
validation, placing our results at the upper end of 
reported performance on this dataset.  

Importantly, several prior studies summarised in 
Table 4 rely on segment-level evaluation schemes or 
do not explicitly address control for subject overlap 
between the training and test sets, which may lead to 
optimistic performance estimates. In the present study, 
although evaluation is conducted at the window level, 
we explicitly acknowledge this limitation and apply a 
consistent cross-validation protocol with leakage-
aware preprocessing, where normalisation parameters 
are derived exclusively from training folds. This design 
improves transparency and reduces indirect 
information leakage during preprocessing. 
Nevertheless, a fully subject-wise validation protocol 
represents an important direction for future work to 
further assess cross-subject generalization. While 
direct numerical comparisons should be interpreted 
with care due to differences in feature design and 
resampling strategies, the aggregated evidence in 

Table 4 suggests that integrating DWT denoising, 
channel-by-time heatmap encoding, and probability 
level fusion yields a competitive and often stronger 
alternative to existing wavelet-based and EEG-to-
image approaches on the KAU cohort. 

Although the proposed framework achieves very 
high window-level accuracy under subject-wise cross-
validation, the relatively small, single-site nature of the 
KAU dataset (16 subjects) remains an important 
limitation for generalizability. With limited subject 
diversity, performance estimates may exhibit higher 
variance when applied to larger or more heterogeneous 
cohorts, and part of the observed accuracy may reflect 
dataset-specific characteristics related to acquisition 
protocols or site-dependent factors. While leakage-
aware preprocessing and subject-wise validation 
mitigate trivial forms of overfitting, they cannot 
substitute for validation on independent external 
datasets. Accordingly, the reported results should be 
interpreted as evidence of strong within-dataset 
discrimination rather than definitive clinical 
generalization. External validation on multi-site cohorts 
using different EEG systems and acquisition protocols 
is, therefore, a critical direction for future work. 

 

V. Conclusion 

This paper presented an EEG to heatmap pipeline for 
autism spectrum disorder classification that combines 
discrete wavelet transform denoising, fixed-length 
overlapping windows, and channel-by-time pseudo 
colour images processed by modern deep learning 
architectures. Five ImageNet pretrained models, 
ConvNeXt Tiny, Swin Transformer Tiny, EfficientNet B0, 
GoogLeNet, and ShuffleNetV2 0.5x, were fine-tuned 
under a unified training protocol and evaluated with 5-
fold cross-validation on the KAU ASD EEG dataset. A 
heavy-light decision fusion scheme was then used to 
combine one heavyweight and one lightweight 
backbone at the probability level. The experimental 
results showed that ConvNeXt Tiny provided the 
strongest single model baseline, with an accuracy of 
around 97.25 percent and an F1 score of around 97.10 
percent at the window level, while Swin Transformer 
Tiny formed a close second tier. Lightweight 
architectures, especially EfficientNet B0 and 

Table 4. Comparison of ASD EEG classification performance on the KAU dataset. 

Ref Methods Accuracy (%) 

[12] CWT features → SVM 95 

[13] SWT (Levels 3/4/6) → FLDA 95 

[49] Butterworth → ICA → KNN 85.4 

[50] Spectrogram/STFT features → classical ML 95.25 

This Study DWT → ConvNeXt + ShuffleNet 99.56 
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GoogLeNet, achieved F1 scores in the mid-94 percent 
range with substantially smaller model sizes, indicating 
that the proposed DWT plus heatmap representation 
offers a robust and architecture-agnostic input. The best 
heavy-light pair, ConvNeXt plus ShuffleNet, achieved 
approximately 99.56 percent Accuracy and 99.53 
percent F1, with both sensitivity and specificity in the 99 
percent range, and confusion matrix analysis confirmed 
that most of this gain comes from reducing missed ASD 
windows without increasing false alarms. 

Although these findings are promising, the 
experiments were conducted on a relatively small, 
single-site dataset with binary ASD versus TD labels, 
and the analysis focused on window-level decisions. 
Future work will therefore focus on validating the 
proposed pipeline on larger, more diverse ASD EEG 
datasets, including external test sets, and on extending 
the image representation to incorporate complementary 
information such as time frequency structure or 
connectivity measures. It would also be valuable to 
design simple subject-level decision rules and 
lightweight implementations of the best heavy-light pair, 
so that the present results can move closer to practical 
decision support for ASD screening and follow-up in real 
clinical settings. In addition, the generalizability of the 
optimal heavy-light backbone pairing and fusion weights 
identified on the KAU dataset should be systematically 
examined across datasets with different recording 
paradigms, age groups, and EEG montages. Practical 
considerations for real-time deployment, including 
inference latency under overlapping window processing 
and probability level fusion, also warrant further 
investigation. Finally, transfer learning from larger 
general EEG corpora may provide a promising strategy 
to improve robustness and reduce dataset dependency 
when adapting the proposed framework to new clinical 
settings. 
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