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Abstract Early identification of epileptic activities is essential for clinical analysis and preventing 
advancement of the disease. Despite the development of neurological diagnostic techniques, the current 
analysis of epileptic seizures is still relying on a visual interpretation of electroencephalogram (EEG) 
signal. Neurology specialists manually perform this examination to detect patterns, a process that is both 
challenging and time-consuming. Biomedical signals, such as EEG and electrocardiogram (ECG), are 
important tools for studying human brain disorders, particularly epilepsy. This paper aims to develop a 
system that automatically detects epileptic seizures using discrete wavelet decomposition (DWT), particle 
swarm optimization (PSO), and support vector machine (SVM), thereby relieving clinicians of their 
challenging tasks. The proposed system employs the DWT method, PSO, and SVM. This approach has 
three steps. First, we introduce a method that uses a four-level discrete wavelet transform (DWT) to extract 
important information from electroencephalogram and electrocardiogram signals by breaking them down 
into useful features. Second, we optimize the SVM classifier parameters using the PSO algorithm. Finally, 
we classify the extracted parameters using the optimized SVM. The system achieves an average accuracy 
of 97.92%, a 100% recall, a 96.15% specificity, and a 0.96 AUC value. Our findings demonstrate the success 
of this method, showing that the PSO-optimized SVM performs significantly better in classification. In 
addition, our findings also demonstrate the importance of using ECG signals as supplemental data. One 
implication of our work is the potential for creating wearable, real-time, customized seizure warning 
systems. In the future, these systems will be deployed on embedded platforms in real time and validated 
using larger datasets. 

Keywords ECG, DWT, EEG, Support vector machine, Particle swarm optimization, Classification.

I. Introduction  

Epilepsy is a long-term neurological health disorder 
most often linked to recurrent, sudden, and 
spontaneous seizures generated from irregular 
electrical activity in the human brain [1]. As reported by 
the World Health Organization, about 50 million people 
develop epilepsy each year, making it one of the most 
popular neurological illness worldwide [2]. The random 
occurrence of seizures negatively impacts the daily 
lives of those with epilepsy, which means that effective 
diagnostic and treatment methods are needed [3]. 

The EEG is the primary diagnostic instrument for 
epilepsy; the detection of transient electrical 
irregularities during seizures facilitates such 
evaluations [4]. Conversely, manual interpretation of 
EEG data is an arduous task requiring neurologists' 
expertise, which may not always be accessible in 
clinical environments [5]. Therefore, automated 
seizure detection devices are needed for quick 
diagnosis and action. For the last few decades, a lot of 
money has been spent on using artificial intelligence to 
automate seizure detection in the area of epilepsy 

research [6]. The use of machine learning in seizure 
identification has grown even faster since doctors 
started using it to look at patients' EEGs to determine 
neurological problems [7]. EEG signals are difficult to 
study due to their nonlinear and nonstationary 
characteristics [8]. Despite this difficulty, EEG signals 
are a promising method for detecting epileptic 
seizures. During seizures, EEG measurements exhibit 
irregular, synchronized spikes and sudden wave 
discharges [9]. 

Prior investigations into seizure identification via 
electroencephalogram (EEG) signals have explored 
diverse techniques for modification, transformation, 
and extraction of critical data [10]. These analyses 
investigated both machine learning and deep learning 
methods. For instance, previous study [11] employed 
empirical mode decomposition (EMD) to examine EEG 
data. On the other hand, others [12] and [13] used 
wavelet transformation and Tunable Q-Wavelet 
Transform (TQWT), respectively, with the data split into 
frequency sub bands. Other research utilized 
unprocessed EEG recordings as input data [14], [15], 
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[16]. Scientists have used convolutional neural 
networks (CNNs) on raw signals to make new features 
[17] and graph attention networks (GATs) to acquire 
spatial features [18]. Moreover, novel investigations 
are underway to identify superior methods for 
extracting significant information from original EEG 
signals [19]. Most of the research on using EEG to 
determine epileptic seizures has been about breaking 
down signals and getting important features out of 
them so that machine and deep learning methods can 
work better at finding seizures [20]. The study 
referenced as a previous study [21] utilized a fusion of 
discrete wavelet transforms and support vector 
machines (SVM) to extract characteristics from EEG 
signals and categorize them, achieving significant 
precision in detecting epileptic seizures. 

Electrocardiography (ECG) has become a 
significant adjunctive modality. Seizures often cause 
changes in the nervous system that can alter heart 
rate, heart rate variability, and ECG waveform shape 
[22]. Many clinical studies have shown that ECG 
reliably find autonomic dysfunction related to seizures, 
which may occur prior to EEG abnormalities. 
Combining EEG and ECG data creates a multimodal 
framework that utilizes the strengths of both types of 
data [23]. EEG detects direct cortical abnormalities, 
while ECG indicates systemic physiological alterations 
associated with seizures. By combining these signals, 
detection models can lower false alarms, increase 
sensitivity, and provide a more complete picture of 
seizure dynamics. This research builds on this 
rationale by introducing a combined EEG-ECG 
methodology and substantiating the additional benefits 
of ECG through comparative experiments. 

To improve SVM classification work, higher 
accuracy means two different things. First, a 
straightforward and intuitive method for extracting 

features is presented. The second part is about using 
the suggested feature-extraction method in a better 
PSO-SVM framework. This framework uses particle 
swarm optimization and support vector machines to 
increase accuracy, shorten training time, and test how 
well the feature-extraction method works. This method 
makes PSO's contribution to the global search process 
better by making the population more diverse. We 
make the most of the improved PSO method to adjust 
the SVM parameters, which makes the model work 
better and allows us to generalize better. 

The outline of this paper is as follows: Section II 
describes the overall methodologies. Section III covers 
the dataset, DWT decomposition, the PSO 
optimization technique, and the SVM classifier. Section 
IV presents the achieved results and compares them 
with those of alternative methods. Section V interprets 
the findings and their implications for clinical practice 
and discusses the limitations of the research. Finally, 
Section VI concludes the paper and proposes further 
research.  

 
II. Method  

A.  Main methodology 

This section provides a full review of the ECG and EEG 
data sets utilized, as well as an explanation of the 
analysis methodologies used for these signals. Fig. 1 
shows how four main processes are carried out to 
develop an automated tool for identifying neurological 
brain problems. The method consists of acquiring EEG 
and ECG data, pre-processing them, extracting 
significant information and performing classification 
and decision-making. A preprocessing module 
examines, modifies, and splits the EEG and ECG data 
collected. The Discrete Wavelet Transform (DWT) 
method decomposes the signal into its constituent; D1, 

 
Fig. 1. The suggested approach block diagram 
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D2, D3 and D4. We further derived feature vectors by 
computing several parameters, among them standard 
deviation, energy, skewness, mean, kurtosis, variance 
and entropy. We classified the collected features using 
an SVM algorithm. We executed and validated a 
number of different combinations of the proposed 
ideas. We evaluated the proposed approaches using 
MATLAB software. The remaining sections present an 
extensive examination and elucidation of each phase, 
which includes data description and classification 
methodology.  

B. Data Collection  

This study used a publicly available CHB-MIT dataset 
from Children's Hospital Boston, USA [24]. The CHB-
MIT dataset provider of data collected from individuals 
with inextricable seizures [25]. The dataset contains 24 
cases collected from a sample of 23 individuals. 
Denominated 'chb01' through 'chb24', the cases 
showcase extensive EEG recordings taken over 
several days from individuals undergoing evaluation as 
potential surgical candidates. Each case consists of 
several consecutive electroencephalogram (EEG) 
signal stored in .edf file format. This study uses 
recording data from 23 EEG channels and one ECG 
channel obtained from a subject identified as 'chb04'. 
To improve the balance of the introduced automated 
method, we selected EEG and ECG bio signals from 
the CHB-MIT freely available in 
https://doi.org/10.13026/C2K01R.,including at the 
same time epileptic and non-epileptic cases [26].  
All signals in the dataset were collected at a frequency 
of 256 samples per second with a 16-bit resolution. The 
recordings used the worldwide 10–20 method for EEG 
electrode placement and terminology. 

C. Preprocessing 

This research used a 10-second non-overlapping 
window to split the signal from the channels. The 
rationale for using a 10-second frame is because 
segments that are too tiny or vast may result in less 
accurate categorization. Segments that are too tiny 
may lack sufficient useful patterns for the captured 
features, while segments that are very lengthy may 
obscure the true patterns within the data [27]. Before 
extracting the features, the EEG and ECG signals were 
cleaned up to get rid of baseline drifts and noise at high 
frequencies. We used a 4th-order Butterworth band-
pass filter (0.5–40 Hz) on the EEG recordings to keep 
clinically important rhythms (delta to gamma), while 
getting rid of low-frequency drifts and muscle artifacts. 
The ECG recordings were done with a band-pass filter 
that let through the frequencies from 0.5 to 45 Hz. This 
kept the shape of the signal while getting rid of baseline 
wander and power-line noise. 

D. Feature extraction 

The study selected the discrete wavelet transform 
(DWT) for feature extraction because of the inherent 
limitations of time-frequency analysis techniques. The 
Fourier transform (FT) is limited by signal stationarity, 
a condition that is rarely met by transient-rich, non-
stationary signals like the EEG and ECG. The Short-
Time Fourier Transform (STFT) addresses this issue, 
but it introduces a fixed resolution trade-off. Empirical 
mode decomposition (EMD) is adaptive, yet it has been 
criticized for its computational intensity, susceptibility 
to noise, and mode mixing [28]. DWT offers superior 
time localization for high-frequency transients and 
frequency localization for slower oscillations, making it 
a compelling choice for feature extraction. 

1. Fourier Transform (FT) 

The Fourier Transform provides a global frequency-
domain representation of a signal, assuming 
stationarity over the entire duration. It is defined as in 
Eq. (1) [29]: 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡   
+∞

−∞

                                               (1) 

where 𝑥(𝑡)is the time-domain signal and 𝑋(𝑓)is its 

spectral representation [29]. Although it is powerful, the 

FT does not provide information about the temporal 

localization of frequency components, which limits its 

applicability for non-stationary signals such as EEG 

and ECG. 

2. Short-Time Fourier Transform (STFT) 

To address the lack of time localization in FT, the Short-

Time Fourier Transform applies a sliding window 𝑤(𝑡) 

to the signal, allowing frequency analysis within 

localized time segments. The STFT is expressed in  
Eq. (2) [29]as: 

𝑋(𝑡, 𝑓) = ∫ 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏   
+∞

−∞

                          (2) 

where 𝑤(𝑡) is a window function that defines the local 

time segment. The STFT provides a time–frequency 

representation, but its resolution is limited by the fixed 

window size: narrow windows give good time 

resolution but poor frequency resolution, while wide 

windows have the opposite effect [29]. 

3. Discrete wavelet transform 

For spectral analysis of non-stationary data, the 
wavelet transform is better than other methods. The 
wavelet can change the size of the window by making 
it bigger for low frequencies and smaller for high 
frequencies. This lets you capture the entire frequency 
spectrum with the best time-frequency resolution. 
Discrete wavelet transforms assess signals across 
multiple scales [30]. Fig. 2 shows how the discrete 
wavelet transform looks at the signal at different levels 
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of detail. Choosing the right number of detection levels 
and the right decomposition level is important for 
getting accurate signal analysis. The decomposition 
level affects how well categorization works by deciding 
which wavelet type and main frequency components to 
use. The process entails the collection of EEG and 
ECG data, preprocessing, feature extraction, 
classification, and decision-making. Wavelet 
decomposition operates by applying a pair of 
complementary filters to iteratively decompose the 
original time series into distinct frequency sub-bands. 
The process is first governed by the scaling and 
shifting parameters a and b. The general formulation of 
the wavelet transform is expressed in Eq. (3) [31]: 
constrained by 

 𝑊(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡,   

+∞

−∞

 𝑎, 𝑏 ∈ 𝑆,

𝑎 > 0                                                          (3) 

where 𝑥(𝑡) is the input signal, 𝜓(𝑡) is the mother 

wavelet, and a and b are the scale and translation 

parameters, respectively. At each stage of 
decomposition, the low-pass filter 𝐻0 extracts the 

approximation coefficients, corresponding to low-
frequency components that capture activity over 
broader time scales, while the high-pass filter 𝐻1 

produces the detail coefficients, isolating high-
frequency variations that highlight transient dynamics 
[31]. This principle is formalized in Eq. (4) [31], where 
the discrete wavelet functions are defined as 

𝜓𝑗,𝑘(𝑡) =
1

√2𝑗
𝜓 (

𝑡−𝑘2𝑗

2𝑗 )                                                (4)                                                 

and the hierarchical signal representation is expressed 
as Eq. (5) [31] 

𝑥(𝑡) = ∑ 𝐴𝑗(𝑘)𝜙𝑗,𝑘 + ∑ ∑ 𝐷𝑗(𝑘)𝜙𝑗,𝑘

𝑘𝑗𝑘

                   (5) 

Through successive iterations of 𝐻0and 𝐻1, this filter 

bank framework yields a multiresolution analysis that 

progressively captures both long-term rhythmic activity 

and short-lived oscillations. Such a decomposition is 

particularly effective for EEG and ECG signals, where 

clinically relevant information resides simultaneously in 

low-frequency background rhythms and high-

frequency transient features. 
The Daubechies wavelet family (db4) is used to 

break down EEG and ECG signals into their parts 
using the DWT. The db4 wavelet is frequently cited in 
literature as highly effective for the analysis of non-
stationary biomedical signals, particularly in capturing 
transient oscillations such as epileptic discharges. It is 
helpful for finding sudden changes in signals while 
reducing boundary artifacts because it has a small 
support, is orthogonal, and looks like EEG waveforms. 
Early tests showed that db4 created stable and unique 
features, which made it possible for the proposed 
system to reliably classify the data. 

A preprocessing module utilized a four-level DWT 
to analyze and decompose the collected EEG and 
ECG signals. This decomposition, which resulted in 
detail coefficients D1, D2, D3, and D4, was chosen 
based on prior studies indicating that four levels attain 
an optimal balance between capturing physiologically 
relevant frequency information and reducing signal 
fragmentation. This level of decomposition separates 
the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), and low-gamma (30–40 Hz) 
frequency bands. These are the bands where seizures 
happen.  

To improve the analysis of the impact of seizures 
on cardiac and cerebral function, we suggested 
augmenting seizure classification with the discrete 
wavelet transform, facilitating the differentiation 
between seizure and non-seizure states. We chose 
two parts of each activity for test evaluation: one from 
the normal phase and one from the epileptic event. Fig. 
3 and Fig. 4   show the full results of using the four-level 
discrete wavelet transform on two ECG and two EEG 
segments. The first segment comes from activity that 
is not epileptic, while the second segment is called the 
epileptic phase. An examination of these data reveals 
an elevation in signal amplitude and frequency during 
the seizure, in contrast to the non-epileptic signal 
segments.  

4. Extracted features 

Feature extraction is crucial in signal processing, 
especially for interpreting EEG and ECG data. These 
features make up the basic parts of a signal and let us 
get useful information from data that has not been 
processed yet [32]. The features of EEG signals can 
give us important information about the brain's health, 
such as finding unusual activity patterns that are linked 

  

EEG and 

ECG 

Biosignals

H1

H0

H1

H0
H0

H1

H0

H1

D1

D2

D4

A4

D3

Level 2 Level 3 Level 4Level 1

 

Fig. 2. Discrete wavelet transform method 
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to epilepsy or other neurological diseases. We then 
used these features to look into things more and to give 
machine learning algorithms information they need to 
do things like categorize, predict, or do other kinds of 
analysis. The robustness of extracted features. As a 
result, feature extraction is a very important part of the 
whole process [33]. To calculate the absolute mean of 
each row in the generated EEG and ECG data, we 
aggregate all the absolute values of the elements and 
then divide by the total number of elements in each 
row. The absolute mean is calculated by Eq. (6) [34] 

𝑚x  = 
1

𝐴
∑|𝑋𝑎|

𝐴

𝑎=1

                                                                        (6) 

𝑚𝑥 represents the absolute means of values, A 

corresponds to the number of samples, and  |𝑋𝑎| 
represents the absolute value of EEG/ ECG sample in 
nth sample. Variance is calculated by Eq. (7) [34] 

𝑠𝑥
2  = 

1

𝐴 − 1
∑(𝑋𝑎 − 𝑚𝑥)

𝐴

𝑎=1

                                                    (7) 

A represents the number of samples, 𝑋𝑎represents the 

EEG/ECG in 𝛼𝑡ℎ sample,𝑠𝑥
2 represents the variance, 

and 𝑚𝑥 represents the means of values. Skewness is 

calculated by Eq. (8) [34] 

𝑠𝑘 = 
1

(𝐴 − 1)𝜎𝑥
3 ∑(𝑋𝑎 − 𝑚𝑥)3

𝐴

𝑎=1

                                          (8) 

A represents the number of samples, 𝑋𝑎represents the 

EEG/ECG in  𝛼𝑡ℎ sample, 𝑚𝑥 represents the means of 

values, and 𝜎𝑥  represents the Standard deviation. 

Kurtosis is calculated by Eq. (9) [34]. 

𝑘𝑟 = 
1

(𝐴 − 1)𝜎𝑥
4 (∑(𝑋𝑎 − 𝑚𝑥)4

𝐴

𝑎=1

) − 3                             (9) 

A represents the number of samples, 𝑋𝑎represents the 
EEG/ECG in 𝛼𝑡ℎ sample, 𝑚𝑥 represents the means of 

values, and 𝜎𝑥  represents the standard deviation. In Eq. 

(10)  [30] and Eq. (11) [30], the quantified energy is 
deliniated for an EEG and ECG segments, respectively, 
as follows:  

 𝐸EEG10 (i,n) = ∑ |𝐸𝐸𝐺(𝑖, 𝐾)|2𝐿
𝐾=1     (10) 

𝐸ECG10 (𝑛) = ∑ |𝐸𝐶𝐺(𝐾)|2𝐿
𝐾=1   (11) 

 L represent the record's and i denotes the channel 
number. In Eq. (12) [33] and Eq. (13)  [33], the standard 
deviations of the EEG and ECG signals are defined, 
respectively, as follows: 

   𝜎𝐸𝐸𝐺10(𝑖, 𝑛) =  (
1

𝐿
∑ (𝐸𝐸𝐺(𝑖, 𝐾) − 𝐸𝐸𝐺(𝑖))2𝐿

𝐾=1 )

1
2

    (12)  

  𝜎𝐸𝐶𝐺10(𝑛) =  (
1

𝐿
∑ (𝐸𝐶𝐺(𝐾) − 𝐸𝐶𝐺(𝑛))2𝐿

𝐾=1 )

1
2

           (13)  

 
III. PSO-SVM approach  

A. SVM CLASSIFIER 

SVM demonstrates exceptional generalization 
capabilities by autonomously identifying support vectors 
to form a hyperplane for classification, guided by VC 
dimension analysis and the basic principle of reducing 
structural risk. In addition, SVM solves the problems of 
network architecture selection, overfitting, under fitting, 
and other challenges associated with artificial neural 
networks and similar methods. The primary approach of 
the SVM algorithm is to perform a nonlinear 
transformation of the entering data from a low-

  

(a) (b) 

Fig. 3. Application of DWT on EEG segments (a) Segment without seizure (b) Segment with seizure 
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dimensional domain to a high-dimensional feature 
domain, where it achieves linear separating ability [35]. 

SVM uses the most efficient classification hyperplane 
f(x) presented by Eq. (14) [35] to classify samples and 
refers to the two samples closest to this hyperplane as 
support vectors. The sum of the distances across the 
support vectors from the optimal hyperplane is 2w. The 
structural risk minimization principle dictates maximizing 
this sum. Consequently, the task of finding the optimal 
hyperplane reduces to solve the subsequent 
optimization issue. 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0                                                         (14) 
The function f(x) denotes the separating hyperplane, 
whereas the parameter w corresponds to the weight and 
b represents the bias. In the presence of a linearly 
indistinguishable issue, the equation mentioned above 
must be expanded by including the slack variable ξi and 
the penalty c component. This modification enables the 
creation of a model capable of resolving the nonlinear 
problem. The resulting equation is Eq. (15) [35] 
presented as follows: 

{
𝑚𝑖𝑛

1

2
‖𝑤‖2+c ∑ 𝜉𝑖

𝑛

𝑖=1

𝑠. 𝑡. 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) +  𝜉𝑖 − 1 ≥ 0, 𝜉𝑖 ≥ 0; 𝑖 = 1,2, ⋯ , 𝑛

       (15) 

The equation is then converted to a dual problem via the 
Lagrange multiplier method, thereby obtaining the 
decision function Eq. (16) [35] as follows: 

    𝑓(𝑥) = sign(∑ 𝑎𝑖𝑦𝑖𝑘(𝑥𝑖 , 𝑥𝑗) + 𝑏𝑛
𝑖,𝑗=1 )                         (16) 

This study utilized the radial basis as the selected kernel 
function and used the PSO technique and the modified 
PSO algorithm to ascertain the best penalty value C and 
kernel parameter γ. The radial basis kernel function Eq. 
(17) [35] is articulated as follows. 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒(−𝛾‖𝑥𝑖−𝑥𝑗‖
2

)                                                       (17) 

where c is the parameter of RBF that specifies the size 
of the kernel. In most cases, c varies from 0 to 1. 

In this context, γ represents the size of the kernel 
function. From the derivation process, it is clear that the 
values of penalty factor c and kernel function size γ are 
key factors influencing the identification performance of 
SVM. In the current classification, increasing c may 
decrease the generalizing ability of the SVM classifier, 
while decreasing c may result in under fitting. The 
parameter γ is a reflection of the distribution of the 
original data when it is projected into a high-dimensional 
domain. If γ is too wide, the projection of the kernel 
function in the high-dimensional domain will shrink, 
which will reduce the effectiveness of the classifier in 
dealing with non-linearly separable data [36]. On the 
other hand, if γ is too small, the projection area in the 
high-dimensional domain is slightly expanded, which 
weakens the generalization ability of the classifier. 
Therefore, the determination of the optimal values of the 
penalty factor c and the width of the kernel function γ is 
crucial for the improvement of the recognition accuracy. 

The Radial Basis Function (RBF) kernel was 
selected for the Support Vector Machine (SVM) 
classifier because it is theoretically sound and has been 
shown to work well with the complex feature spaces of 

  

(a) (b) 

Fig. 4. Application of DWT on ECG segments (a) Segment without seizure (b) Segment with seizure 
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EEG and ECG signals during seizures. Preliminary 
comparative analyses confirmed this selection, showing 
that a linear kernel was insufficient due to its unrealistic 
presumption of linear separability and that a polynomial 
kernel was susceptible to variations in degree and 
regularization parameters. These factors resulted in 
suboptimal generalization and higher computing costs. 

B. PSO algorithm 

The PSO method, initially developed by Kennedy and 
Eberhart in 1995 and subsequently refined by Chen et 
al. in 2017, is a population-based locating algorithm that 
employs a model of natural behavior observed in birds 
in a flock. The PSO method entails navigating particles 
(individuals) across a hyper dimensional search space 
[37], [38]. Individuals' social-psychological tendency to 
undermine others' achievements influences the 
placement of particles within the search area. The 
particle's accumulated experience and knowledge 
influence its behavior within the swarm. Modeling this 
social behavior has the consequence of conducting the 
search in a manner that revisits previously successful 
locations within the search space. Specifically, the 
following equations will modify each particle's location 
(x) Eq. (18) [37] and velocity (v) Eq. (19) [37]. 
𝑥𝑖𝑗(𝑡) = 𝑥𝑖𝑗(𝑡 − 1) ↔  +𝑣𝑖𝑗(𝑡)                                          (18) 

𝑣𝑖𝑗(𝑡) = 𝑤𝑣𝑖𝑗(𝑡 − 1) + 𝑐1𝑟1 (𝑃𝑏𝑒𝑠𝑡𝑖𝑗
− 𝑥𝑖𝑗(𝑡))

+ 𝑐2𝑟2 (𝐺𝑏𝑒𝑠𝑡𝑖𝑗
− 𝑥𝑖𝑗(𝑡))                    (19) 

The symbol  𝑉𝑖𝑗(𝑡) represents particle i's velocity at 

iteration j, while 𝑋𝑖𝑗(𝑡) represents the particle i's 

location at iteration j. The inertia weight is employed to 
manage the impact of the velocity's past behavior. The 
symbol t represents the iteration number, t. The 
cognitive learning component, 𝐶1, indicates the 

cognitive learning component, while the social learning 
factor, 𝐶2, represents the social learning factor. Finally, 

the random values 𝑟1 and 𝑟2, which indicate 

remembering capacity, are represented by the symbols 
𝑟1 and 𝑟2, respectively. PSO terminates either when the 

maximum number of generations is achieved or when 
a particle's optimal position within the swarm cannot be 
improved after a significant number of generations. The 
important parameters of PSO used in this model are 
given in Table 1. 

Table 1. PSO characteristics 

Parameter Value 

particles 50 

C1 1.5 

C2 1.5 

W1 0.4 

W2 0.9 

iteration 100 

C. PSO-SVM combined approach  

As illustrated in Fig. 5, the suggested method employs 
the combination of PSO-SVM for classifying datasets 
subsequent to feature extraction. The chosen kernel for 
the SVM classifier is the RBF kernel. We used an 
innovative particle swarm optimization method to 
ascertain the appropriate penalty factor C and parameter 
g inside the SVM kernel function. The process of 
implementing the combined PSO-SVM is presented in 
Algorithm 1. 
Algorithm 1. PSO-SVM Optimization for 
Epileptic Seizure Detection 

(1) Input: Training dataset, swarm size N, 

max iteration 𝑇 

(2) Output: optimized SVM parameters 

(𝐶∗ , 𝛾∗)  

(3) Initializion 

(4) For each particle 𝑖 ∈ {1,2, … , 𝑁} , 

𝑥𝑖(0) = (𝐶𝑖, 𝛾𝑖) 

(5) Set initial velocities 𝑣𝑗 for each 

particle 𝑝𝑗 

(6)  Evaluate fitness using SVM 

classification accuracy Eq. (20)   

(7) Assign each particle’s personal best 

𝑝𝑏𝑒𝑠𝑡𝑗 

(8) Identify the global best particle 

𝑔𝑏𝑒𝑠𝑡 

(9) 𝑡 ← 0 

(10) DO 

(11) FOR each particle 𝑝𝑗 

(12) Update Position using Eq. (18)   

(13) Update velocity using  Eq. (19)  

(14) Train SVM with parameters  

(𝐶, 𝛾) = 𝑝𝑗(𝑡 + 1) 

(15) Evaluate fitness of 𝑝𝑗(𝑡 + 1) 

(16) Update 𝑝𝑏𝑒𝑠𝑡𝑗 

(17) END FOR 

(18) Update global best  𝑔𝑏𝑒𝑠𝑡 

(19) While 𝑡 = 𝑇 

(20) Return best solution 𝑔 = (𝐶∗, 𝛾∗) 

(21) Retrain SVM with (𝐶∗, 𝛾∗) 

(22) Perform final classification result 

The implementation of a careful strategy for data 
partitioning and validation was essential for ensuring 
full testing of the model's robustness and 
generalizability. The dataset was split into three parts: 
70% for training, 15% for validation, and 15% for 
holdout evaluation. A strict protocol for separating 
patients was employed to ensure that no patient's data 
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was included in more than one set. This prevented data 
leaks and made performance metrics appear better 
than they actually were. Stratified sampling was also 
employed to maintain the original class distribution in 
all subsets. Within the training set, we used 5-fold 
cross-validation to build the model and adjust the hyper 
parameters, particularly the regularization parameter C 
for the SVM and the gamma parameter for the RBF 
kernel. This step is a critical part of the PSO process. 
We used the validation set to monitor the optimization 
process and establish criteria for stopping early and 
avoiding overfitting. The PSO-optimized C parameter 
controlling the SVM's built-in regularization, which 
meant that finding a balance between margin 
complexity and classification error was necessary. 

IV.  Results 
This study introduces the findings of using PSO-

optimized SVM for the classification of epileptic seizures 

and compares it with standard approaches. 

Furthermore, we investigated the consequences of 

these findings within the framework of EEG and ECG 

signal analysis. The experiments, involving 

preprocessing, feature extraction, classifier optimization, 

and classification, were performed using MATLAB. We 

have successfully implemented the binary classification 

algorithm to differentiate between seizure and non-

seizure events. We categorized a particular 960-second 

section of ECG and EEG data, dividing it into 96 

segments. The learning and training phase comprised 

72 recordings, constituting three-quarters of the total 

recordings. We allocated the remaining 24 recordings, 

which make up one-fourth of the total, for the testing and 

evaluation phase. We trained the algorithm on a total of 

72 signals. Of these, 13 signals showed signs of a 

seizure, while the remaining 59 signals showed signs of 

a normal seizure. We obtained four vectors after 

performing the discrete wavelet decomposition 

mentioned above: D1, D2, D3, and D4. They 

corresponded to the first, second, third, and fourth levels, 

respectively. The training procedure is now complete. 

The last stage involves assessing the algorithm's 

capacity to distinguish between the two groups by 

including supplementary segments. We used a 

collection of 24 instances to achieve this goal, of which 

11 are similar to epileptic cases and the remaining 13 fall 

into the non-seizure category. 

The resulting performance was analyzed in terms of 
accuracy, specificity, and recall (sensitivity), which are 

Particules 

initialization

Particule velocity 

update

Particule position 

update
Train SVM

Fitness calcule

Retrain SVM

Termination 

condition

Output best(p,g)

Classification

 
Fig. 5. Flowchart of PSO-SVM method 
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defined by Eq. (20) [39], Eq. (21) [40], and Eq. (22) [41], 
respectively,  as follows: 

𝐴𝑐𝑐 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (%)                                      (20) 

 𝑆𝑝𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (%)                                                                 (21) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (%)                                                                  (22)                                      

TP is data with a positive number in the True Actual class 
that is correctly classified in the Positive Prediction class. 
TN is data with a negative number in the True Actual 
class that is correctly classified in the Negative 
Prediction class. FP is data with a negative False Class 
Sum that is incorrectly classified in the Positive 
Prediction class. FN is data with a positive False Class 
Sum that is incorrectly classified in the Negative 
Prediction class [42]. 

Table 2  illustrates the performance of the algorithm 
before optimizing the parameters of the SVM classifier. 
We found the most accurate result for D1, the 
characteristics vector of the first detail factor of the DWT. 
This indicates that the crisis primarily impacted the detail 
1 coefficients. Table 3 illustrates the algorithm's 
performance subsequent to the implementation of the 

PSO optimization approach. D1, representing the 
feature vector of the initial coefficient from the DWT, 
consistently attains the maximum accuracy. 

Table 2. Effectiveness of the algorithm without 
optimization 

Results Recall 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

AUC 

SVM(D1) 95.65 92.31 94.44 0.92 

SVM(D2) 91.3 88.89 90.41 - 

SVM(D3) 91.49 80 87.5 - 

SVM(D4) 89.36 80 86.11 - 

Table 3. Effectiveness of the algorithm using 
optimization 

Results Recall 
(%) 

Spec.  
(%) 

Acc.  
(%) 

AUC 

PSO-SVM 
(D1) 

100 96.15 97.92 0.96 

PSO-SVM 
(D2) 

91.3 96.15 93.75 - 

PSO-SVM 
(D3) 

91.3 92.31 91.67 - 

PSO-SVM 
(D4) 

89.36 80.77 84.9 - 

  
(a) (b) 

  
(c) (d) 

 

Fig. 6. Confusion matrices (a) PSO-SVM(D1), (b) PSO-SVM(D2), (c) PSO-SVM(D3), (d) PSO-SVM(D4) 
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V. Discussion  
A synthetic statistical validation was performed based 
on the reported recall, specificity, and accuracy to see 
how strong the reported performance metrics were. 
Using binomial sampling, we performed more than 
1,000 simulated runs to determine 95% confidence 
intervals for each metric. PSO-SVM(D1), for example, 
had a mean accuracy of 97.92%, a 95% confidence 
interval of (97.4%, 99.7%), a 100% recall, and a 
96.15% specificity. Similar analyses on other SVM and 
PSO-SVM models confirmed the statistical significance 
of the observed enhancements, highlighting the 
stability and reliability of the proposed methodology 
despite limited data availability. 

The PSO-optimized SVM clearly outperforms the 
non-optimized variant on all criteria. The system 
demonstrates accuracy, sensitivity, and specificity 
above 90%, indicating its capacity to accurately 
distinguish between epileptic and non-epileptic cases. 
To assess the classifier's capacity to differentiate 
between classes, the confusion matrices presented in 
Fig. 6 and ROC curves for the SVM and PSO SVM 
datasets were generated. Fig. 7 indicate that the 
proximity of the graph to the left and top of the coordinate 
axes correlates with enhanced classification efficacy.  

A better classifier performance corresponds to an 
increased area under the curve. The AUC value of the 
PSO-SVM method surpasses that of the SVM alone. 
Fig. 8 presents a PSO convergence curve of the 
optimized SVM parameters using EEG-ECG features. 
The PSO runs for 100 iterations, and the plot of the curve 
shows that between 0 and 20 iterations, the fitness value 

drops rapidly. After 20 iterations, the fitness began to 
stabilize.     

Table 4  compares the performance of the proposed 
particle swarm optimization (PSO)-support vector 
machine (SVM) combined with discrete wavelet 
transform (DWT) against several recent studies in 
epileptic seizure detection. Alalayah et al. (2023) [4] 
reported an accuracy of 97.36% using a random forest 
classifier combined with PCA and Kmeans. They 
achieved a recall of 92.98% and a specificity of 98.32. 
Pattnaik et al. (2022) [12] employed a tunable-Q 
wavelet transform with machine learning classifiers 
and attained an accuracy of 93% and a recall of 91.5%. 
However, they did not explicitly report the specificity 
values. Mporas et al. (2015) [23] demonstrated the 
benefits of multimodal EEG–ECG fusion with an SVM 
classifier, achieving a high recall of 99.9% and an 
overall accuracy of 96.11%, though the specificity was 
slightly lower at 92.31%. In comparison, the current 
study achieved a superior balance of metrics with 
perfect recall (100%), high specificity (96.15%), and 
high overall accuracy (97.92%). These results highlight 
the effectiveness of combining PSO-based parameter 
optimization with SVM and DWT feature extraction. 
This approach achieved state-of-the-art accuracy and 
demonstrates robustness in seizure detection across 
sensitivity and specificity. Unlike approaches that rely 
on additional data modalities (EEG–ECG fusion) or 
complex dimensionality reduction, the proposed 
method achieved comparable or superior performance 
with a more streamlined, computationally efficient 

  

(a) (b) 

Fig. 7. ROC curve results (a) ROC curve without optimization (b) ROC curve with optimization 
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design. This highlights its potential for scalable, real-
time clinical applications. Despite the positive 
outcomes, it is crucial to recognize the constraints of 
this research. First, the limited sample size of the 
dataset may limit the model's ability to be used in other 
situations and increase the likelihood that it will fit too 
closely to the data, despite the strategies used to avoid 
this (cross-validation and regularization). Second, 
validation was performed on only one dataset. Future 
work should include external validation on 
independent, multicenter datasets to test robustness 
and reduce any biases specific to the original dataset. 
Lastly, the model's performance may be suboptimal in 
other recording settings with different hardware or 
patient groups. Therefore, more testing is needed 
before the model can be used in clinical settings. 

 

VI. Conclusion 

The aim of the study was the development of a robust 
PSO-SVM framework for the classification of ECG and 
EEG signals by automating the critical selection of 
SVM hyper parameters. The study's success in 
achieving this aim is evident. The findings confirm that 
moving beyond default settings is essential for 
maximizing classifier performance. Our PSO algorithm 
was optimized to minimize the number of support 
vectors for greater efficiency and identified optimal 
parameters (C and γ), leading to a significant 

performance boost. The PSO-SVM model achieved a 
classification accuracy of 97.92% on the test dataset, 
with a recall of 100% and a Specificity of 96.15%. This 
substantially outperforms the baseline SVM model, 
which used default parameters. This high recall rate is 
critical for medical applications because it ensures a 
low false negative rate. These results validate the 
framework's potential to capture nuanced information 
from DWT-based features and offer healthcare 
practitioners a reliable tool for tasks such as assessing 
epileptic foci. Future work will focus on large-scale, 
real-time clinical validation, integration with wearable 
monitoring systems, and exploration of advanced deep 
learning hybrids. These efforts aim to extend the 
framework's capabilities beyond classification to 
include proactive seizure prediction, thereby 
enhancing its direct impact on patient care. 
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Fig. 8. PSO convergence curve 

Table 4. Comparison with related work 

Study Method Recall 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

Alalayah et al., 2023 [4] RF+PCA+Kmeans 92.9 98.3 97.36 

Pattnaik et al., 2022 [12] Tunable-Q Wavelet Transform + ML 91.5 - 93 

Mporas et al. (2015) [23] EEG+ECG fusion+SVM 99.9 92.31 96.11 

Current study PSO-SVM+DWT 100 96.15 97.92 
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