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Abstract COVID is a contagious lung ailment that continues to be a world curse, and it remains a highly 

infectious respiratory disease with global health implications. Traditional diagnostic methods, such as RT-

PCR, though widely used, are often constrained by high costs, limited accessibility, and delayed results. 

In contrast, radiology for lung disease detection has been proven advantageous for identifying deformities, 

and chest X-rays are the most preferred radiological method due to their non-invasive nature. To address 

these limitations, this study aims to develop an efficient, automated diagnostic system leveraging 

radiological imaging, specifically X-rays, which are cost-effective and widely available. The primary 

contribution of this research is the introduction of COV-TViT, a novel deep learning framework that 

integrates transfer learning with Vision Transformer (ViT) architecture for the accurate detection of COVID 

pneumonitis. The proposed method is evaluated using the COVID-QU-Ex dataset, which comprises a 

balanced set of X-ray images from COVID positive and healthy individuals. Methodologically, the system 

employs pre-trained convolutional neural networks (CNNs), specifically VGG16 and VGG19 (Visual 

Geometry Group), for transfer learning, followed by fine tuning to enhance feature extraction. The ViT 

model, known for its self-attention mechanism, is then applied to capture complex spatial dependencies in 

the X-ray images, enabling robust classification. Experimental results demonstrate that COV-TViT achieves 

a classification accuracy of 98.96% and an F1 score of 96.21%, outperforming traditional CNN based 

transfer learning models in several scenarios. These findings underscore the model’s potential for high-

precision COVID pneumonitis detection. The proposed approach significantly transforms classification 

tasks using self-attention mechanisms to extract features and learn representations. Overall, the proposed 

diagnostic system COV-TViT can be advantageous in the fundamental identification of COVID pneumonitis. 

 

Keywords Convolution Neural Network, Deep Learning, Machine Learning, Self-Attention, VGG, ViT. 
 

I. Introduction  

In March 2020, the World Health Organization (WHO) 
stated that COVID-19, a form of pneumonitis as an 
eruption, had become an epidemic, starting in Wuhan, 
China, and then expanding globally [1]. COVID 
pneumonitis is tested using two common tests: an 
antibody test and a viral test [2]. Antibody tests detect 

antibodies in blood samples to find out if the patient has 
previously been exposed to the COVID pneumonitis 
virus [3]. Viral tests can diagnose an ongoing infection, 
starting with antigen tests and nucleic acid amplification 
tests (NAATs). The virus that originates COVID-19, 
SARS-CoV-2, is found by viral testing and the 
collection of a sample from the nose or mouth of the 
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infected person. People with COVID pneumonitis 
symptoms or who have had direct contact with 
someone who has tested positive can be 
recommended to have a viral test. NAATs detect the 
genetic material of the virus in samples taken from the 
respiratory tract. They work by amplifying nucleic acids 
and detecting the ribonucleic acid (RNA) sequences 
that encompass the genetic material of the SARS-CoV-
2 virus. There are two methods of NAATs: isothermal 
amplification and reverse transcription-polymerase 
chain reaction (RT-PCR) tests [4]. Antigen tests are 
immunoassays that detect viral antigens to identify 
current viral infections. They are inexpensive and can 
provide results in approximately 15 minutes [5]. 
Conventionally, the most often used NAAT test is RT-
PCR. Despite its specificity, it is complex and time-
consuming, as it can take up to two days to produce 
results. NAAT is expensive and less accessible 
compared to radiology, which is readily available in 
almost every health clinic [6]. 

In the latest studies, beyond direct viral detection, 
recent research has explored radiological imaging as a 
diagnostic aid for COVID pneumonitis. Chest 
radiography seems promising for detecting traces of 
pneumonia caused by COVID. Chest X-ray (CXR) 
imaging has shown considerable promise in identifying 
characteristic COVID-19 pneumonia patterns 
associated with the symptoms. CXR scans are 
available almost instantly after scanning, and the 
approach is an established method with numerous 
papers published by researchers [7-9]. Computed 
tomography (CT) scans are costlier than X-ray scans, 
rendering them unaffordable for specific individuals. CT 
scan technology is less common in underdeveloped 
nations than X-ray machines [7]. Therefore, there is a 
need to develop reliable systems for automated 
detection that will help ease the burden on the 
healthcare system with X-rays. CXR offers distinct 
advantages: it is readily available, provides near instant 
results post scan, is relatively inexpensive, and 
leverages a well-established clinical infrastructure with 
extensive prior research. CT scans are pricier and less 
available than CXR scans, making CXR a more 
practical choice for widespread screening or triage [8]. 
Consequently, there is growing interest in leveraging 
CXR for COVID-19 detection. 

With the assistance of machine learning (ML) in 
healthcare, which uses radiological scans for the 
detection of COVID-19, this can be an alternate option 
[10]. The study employed transfer learning to utilize a 
pre trained Convolutional Neural Network (CNN) model 
and ViT methods [11] to classify X-ray images from the 
publicly accessible COVID-QU-Ex dataset [12] for 
research purposes. This capability enables the model 
to identify subtle and complex patterns indicative of 
COVID-19 pneumonia, potentially capturing features 

less discernible to CNNs. The system undergoes 
training and evaluation using the publicly available 
COVID-QU-Ex dataset. 

Although CXR presents a viable and accessible 
imaging modality for detecting COVID-19-related 
pneumonia, manual interpretation by radiologists is 
time consuming and subject to variability and can 
overwhelm healthcare systems during high volume 
pandemic periods. While ML, particularly deep learning 
applied to radiological scans, has emerged as a 
potential solution for automated COVID-19 detection 
[10], the existing approaches often rely heavily on 
standard CNNs or their transfer learned variants. A 
significant gap exists in thoroughly exploring and 
optimizing the application of the novel ViT architecture 
[11], originally designed for natural images, specifically 
for the task of COVID-19 diagnosis from CXR images. 
There is a need for robust, automated systems that 
leverage cutting edge deep learning paradigms like ViT 
to maximize efficiency in interpreting readily available 
CXR scans for COVID-19. 

This research presents COV-TViT, a distinctive 
diagnostic system designed for COVID-19 detection 
through transfer learning and a ViT based approach. 
Our research highlights the efficacy of transfer learning 
and ViT in effectively meeting the pressing need for 
prompt and accurate COVID-19 diagnosis using non-
invasive imaging techniques. This method exemplifies 
the necessity of employing transfer learning 
procedures and provides valuable insights to 
researchers examining COVID-19 patients through X-
ray analysis. In the context of transfer learning, our 
strategy involves using fine-tuned preexisting VGG16 
and VGG19 models [13]. It allows us to use the 
previously learned information and hierarchical 
representations. It enables the networks to efficiently 
capture unique patterns associated with COVID-19 in 
X-ray images, enabling precise and effective 
identification of the illness. The methodology includes 
the utilization of pre-trained VGG16 and VGG19 CNNs 
in conjunction with a customized ViT for transfer 
learning. Initially, fine-tuned VGG16 and VGG19 
models were used to leverage their learned features 
from extensive image datasets, effectively capturing 
unique COVID-19 patterns in CXR images. Secondly, 
and more innovatively, the ViT architecture [11] is 
adapted for the task. ViT breaks down the CXR image 
into patches and uses self-attention mechanisms to 
understand the image's long range connections and 
spatial relationships. The ViT, initially designed for 
image processing, has been adapted to accurately 
identify intricate patterns and subtle indicators of 
COVID-19 in X-ray images. The ViT can distinguish 
specific radiological attributes related to the virus using 
self-attention and hierarchical feature extraction 
techniques [14]. This capability allows the ViT to 
achieve high accuracy and efficiency in diagnosing 
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viruses. The implementation of ViT in this context 
demonstrates substantial promise in improving the 
prompt identification and surveillance of COVID-19. 
The main objective of this research is to create and 
validate the COV-TViT framework, an automated 
diagnostic system aimed at promptly and accurately 
detecting COVID-19 infections through the analysis of 
accessible CXR images. This goal is accomplished by 
synergistically combining the strengths of transfer 
learning from established CNN architectures with the 
advanced pattern recognition capabilities of the ViT 
paradigm.  

While RT-PCR remains the diagnostic gold 
standard for COVID-19, its limited sensitivity during 
early infection and delayed turnaround time hinder 
timely intervention. Radiological imaging, particularly 
X-rays, offers rapid and accessible screening but 
suffers from interpretive variability and overlap with 
other pneumonias [15]. The existing AI-based methods 
often rely on small, imbalanced datasets and 
conventional CNNs with limited receptive fields, 
restricting their ability to generalize and capture global 
contextual features. Although ViTs offer enhanced 
spatial modeling via self-attention, their application to 
medical imaging is constrained by high computational 
demands, lack of locality bias, and limited optimization 
for CXR specific patterns. 

These comprehensive limitations create a 
significant knowledge gap in COVID-19 diagnostic 
capabilities. Current approaches fail to effectively 
combine the accessibility of X-ray imaging with the 
pattern recognition capabilities of advanced deep 
learning architectures. Specifically, there is insufficient 
research on optimizing ViT architectures for COVID-19 
detection, particularly regarding transfer learning 
strategies that can address data scarcity while 
maintaining diagnostic effectiveness. The need for 
robust, automated systems that can provide rapid, 
accurate COVID-19 detection from readily available 
imaging modalities remains unmet. 

Additionally, early transfer learning pipelines 
employing DenseNet-121, SqueezeNet, ResNet50, 
and ResNet18 on the COVID-Xray-5k dataset achieved 
accuracies up to 94.1% but often overfitted small 
sample sizes and remained constrained by local 

receptive fields [8]. COVIDNet’s Projection Expansion 

Projection Extension (PEPX) architecture further 
improved average accuracy to 94.10% by pretraining 
on extensive public cohorts and embedding extracted 

features into a visual transformer [9] [10]. Hybrid ViT-

based solutions, such as VitCNX (98.21% accuracy, 
99.91% AUPR) [11] and DAViT (97% F1 score, 96% 
AUC), demonstrate superior global context modeling. 
However, they require large, balanced datasets, and 
substantial computational resources. Comparative 
analyses have identified ResNet and VGG19 as the 

leading CNN backbones in COVID-19 CXR 
classification [16], while U-Net-based segmentation 
[17] and Grad-CAM-guided interpretability [14] have 
been proposed to bolster clinical applicability. These 
studies underscore a persistent tradeoff between local 
feature extraction, global dependency modeling, data 
efficiency, and scalability. In this context, we proposed 
COV-TViT, which synergistically combines fine-tuned 
VGG16/19 CNNs for robust local feature learning with 
a customized ViT for enhanced global contextual 
understanding, aiming to deliver accurate, efficient, and 
scalable COVID-19 detection from X-ray images. 

The proposed COV-TViT diagnostic framework 
integrates transfer learning and ViT architectures to 
enable accurate and efficient COVID-19 detection, 
demonstrating a significant advancement in ML 
assisted medical imaging:  
1. Novel Framework (COV-TViT): Our innovative 

COV-TViT diagnostic framework is tailored for 

detecting COVID pneumonitis from CXR scans. 

This framework uniquely combines transfer learning 

on a pre trained CNN (VGG16 and VGG19) with a 

tailored implementation of the ViT architecture, 

offering a new approach to leveraging both 

established and emerging deep learning techniques 

for this critical task. 

2. Demonstrated Efficacy of Transfer Learning: This 

study shows that adjusting the VGG16 and VGG19 

models [13] through transfer learning is highly 

effective in identifying important features related to 

COVID-19 pneumonia in CXR images. It validates 

the utility of leveraging pre-existing hierarchical 

representations for efficient and accurate medical 

image analysis in this domain. 

3. Pioneering ViT Adaptation for CXR: We introduce a 

groundbreaking adaptation and thorough evaluation 

of the ViT model [11] for diagnosing COVID-19 

using CXR scans. The work showcases the model's 

capability, via self-attention mechanisms [14], to 

capture complex spatial relationships and subtle 

pathological patterns indicative of COVID-19, 

potentially surpassing the limitations of local 

receptive fields in traditional CNNs for this 

application. 

4. Practical Diagnostic Advancement: The COV-TViT 

system's high accuracy in automated COVID-19 

detection from widely available CXR scans offers a 

practical solution to ease the strain on healthcare 

systems. It offers a pathway toward faster triage, 

reduced reliance on slower traditional tests like RT-

PCR in certain scenarios, and improved resource 

management during pandemic surges.  

The article's structure is as follows: Section 2 
delves into the essential essence of the inquiry, 
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considering contemporary academic research. Section 
3 thoroughly expounds on the materials and 
methodologies used in the study. Section 4 offers an 
extensive examination and elucidation of the study 
results, improving the investigation outcomes' 
exposition. Section 5 discusses the research and 
comparative analysis. The investigation is concluded 
within Section 6. 

 

II. Related Work 

Chest radiography has been discovered to help detect 
lung abnormalities and diagnose lung disorders. At the 
onset of the pandemic, the number of samples of chest 
X-rays was too low to develop generic deep learning 
methods. However, over the years, researchers have 
accumulated sufficient data to make general models 
that can be employed to assist clinicians. State of the 
art brought forth the point that conventional ML 
approaches, transfer learning based methods, and ViT-
based methods were used to accomplish this task. 

S. Minaee et al. created the COVID-Xray-5k 
dataset, which contains around 5000 chest X-ray 
scanned images. A professional radiologist labels the 
X-ray scans for COVID-19 classification. The employed 
dataset enabled the DeepCovid model to trace COVID-
19. They used transfer learning for training four well 
known CNNs: DenseNet-121, SqueezeNet, ResNet50, 
and ResNet18 [8]. L. Wang et al. [9] presented 
COVIDNet, a PEPX architecture, to classify infections 
as normal, COVID pneumonitis, and non COVID. The 
backbone network underwent training utilizing 
extensive publicly available datasets to identify and 
capture aberrant features in COVID-19 diagnoses, 
such as consolidation, ground glass opacity (GGO), 
and others. Subsequently, the embedded features 
derived from the underlying network were employed as 
a corpus to train the visual transformer. The 
experimental findings yielded the maximum average 
accuracy of 94.10% on one of the employed test 
datasets. The suggested model has been verified to 
attain state of the art performance in diagnosing 
COVID-19 [10]. The researcher demonstrated VitCNX, 
an advanced deep learning solution for COVID 
pneumonitis image identification that utilizes ViT and 
ConvNeXt. The recommended VitCNX model 
contrasted against prominent models built with deep 
learning, such as E-NetV2, ResNet-50, DenseNet, 
Swin Transformer, ViT, and ConvNeXt. With a recall of 
99.07%, accuracy of 98.21%, F1 score of 98.55%, AUC 
of 99.85%, and AUPR of 99.91%, VitCNX 
outperformed. VitCNX achieved outstanding results in 
the three classification task, with a precision of 96.68%, 
accuracy of 96.96%, and F1 score of 96.31%. These 
results highlight the outstanding picture classification 
capabilities of VitCNX. The proposed VitCNX model 
intends to help identify COVID-19 patients [11]. A deep 

learning pipeline using ViT was employed to identify 
COVID pneumonitis from the X-rays. The researchers 
collected a total of 30,000 images of X-rays from three 
publicly available datasets. The proposed transformer 
model demonstrated extraordinary accuracy in 
differentiating COVID from normal X-rays, achieving a 
98% accuracy rate and a 99% AUC score in the binary 
classification process. The multi class classification test 
yielded a 92% accuracy and a 98% AUC score for 
distinguishing X-rays in patients. The test dataset was 
assessed using commonly used models, including 
EfficientNetB0, InceptionV3, ResNet50, MobileNetV3, 
Xception, and DenseNet-121, which served as the 
reference models. The transformer model 
demonstrated superior performance across all criteria. 
Grad-CAM visualization was applied to enhance the 
approach's comprehensibility [14]. Hussain et al. [15] 
conducted a series of classification experiments 
including several classes, such as two classes for 
normal and COVID-19, three classes for normal, 
COVID-19, and pneumonia bacteria, and four classes 
for normal, COVID-19, pneumonia bacteria, and 
pneumonia viral. “CoroDet” is the suggested technique, 
which comprises a novel 22 layer CNN model. In their 
study, A. Narin et al. [16] examined the effectiveness of 
a deep transfer learning method that used five distinct 
CNN models for three binary categories. Transfer 
learning offers a significant advantage in data training 
by allowing the use of a smaller amount of data. Among 
all the models trained in the research, ResNet achieved 
the best accuracy. The COVQU dataset included 
18,479 CXRs of subjects with normal lung problems, 
COVID cases, and lung capacity anomalies unrelated 
to COVID. A modified version of the U-Net network was 
presented by the researchers for the purpose of lung 
segmentation and classification. This network makes 
use of seven sophisticated CNN models, one of which 
is the ChexNet model that was suggested [17]. In their 
study, Iqbal et al. [18] conducted four distinct 
classifications of classes, including Normal, COVID-19, 
Pneumonia Bacterial, and Viral. In addition, they 
successfully conducted three class classifications: 
normal, COVID-19, and pneumonia. The classifications 
were successfully conducted on a range of carefully 
prepared datasets using the CoroNet model introduced 
by the authors. The Xception CNN architecture served 
as the foundation for the proposed model. The 
Xception architecture is a 71-layer version of the 
Inception architecture. The proposed domain adapted 
vision transformer (DAViT) is a hybrid vision 
transformer CNN model with domain adaptation that 
fuses global and local features. DAViT achieved 
pneumonia detection with a 97% F1 score and 96% 
AUC, surpassing twelve baseline methods [19]. M. 
Rahaman et al. used deep transfer learning to analyze 
15 pre trained CNN models and found that VGG19 
performed well with an accuracy of 89.30% [20]. They 
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identified COVID using data from two publicly 
accessible databases: "COVID-19 image data 
collection" [21] and "Chest X-ray images (Pneumonia)" 
[22]. The proposed work created a trustworthy deep 
learning model for reliably classifying COVID-19 X-
rays. The suggested technique extracts deeper 
features from images using an ensemble method and 
then employs global second order pooling to obtain 
higher global image features. In addition, images are 
segmented into patches and positions embedded 
before being examined independently using a ViT 
approach. The Covid ChestX-ray-15k dataset achieved 
97.84% accuracy, 96.76% sensitivity, and 96.80% 
precision [23]. 

 

III. Material and Methods   
A. Dataset 

The publicly accessible COVID-QU-Ex dataset was 
employed as the primary source for experimental 
evaluation in this study. Originally, the COVID-QU-Ex 
dataset consisted of 33,920 curated chest X-ray 
images categorized into three diagnostic classes: 
COVID (11,956), normal (10,701), and non COVID 
infections (11,263). The distinguishing feature of the 
dataset is the inclusion of accurate lung segmentation 
masks for all images, facilitating detailed anatomical 
feature analysis [12]. 

B. Optimized Preprocessing Framework 

The preprocessing methodology employed a targeted 
stage and processing based approach leveraging the 
COVID-QU-Ex dataset's unique segmentation masks 
to optimize preprocessed image. The stages are:                     

1. Anatomical Region Isolation: Binary lung masks 
were applied to isolate pulmonary structures, 
suppressing non diagnostic regions (mediastinum, 
thoracic cage) by nullifying pixel intensities outside 
segmented areas. This focused computational 
resources on pathologically relevant zones [12]. 

2. Adaptive Contrast Enhancement: Contrast Limited 
Adaptive Histogram Equalization (CLAHE) with a clip 
limit of 2.0 and an 8×8 tile grid was applied exclusively 
within lung boundaries. This amplified subtle 
radiographic patterns (e.g., GGO) while preventing 
noise amplification in homogeneous tissue regions 
[24]. 

3. Mask-Constrained Normalization: 𝑧-score 

normalization also known as standard scaling, utilized 

intensity statistics (mean 𝜇, standard deviation σ) 

calculated solely within lung regions as illustrated 
through Eq. (1) [25]. 

𝑧 =
(𝑥− 𝜇)

𝑠
       (1)                                                                                                                              

where, 𝑧 = Output/transformed data, 𝑥 = Input data. 

Standard scaling was applied during preprocessing to 

enhance training efficiency and model stability by 
ensuring all features have zero mean and unit variance, 
thus enabling equal treatment across scales. 

4. Multimodal Input Construction: The input comprised 
three diagnostically complementary representations: 
normalized grayscale images, binary lung masks, and 
CLAHE enhanced images. These were resampled to a 
resolution of 224×224 and stacked as input channels to 
enrich feature diversity and spatial context [25]. 

5. Augmentation Strategy: The augmentation strategy, 
applied exclusively to the training data, included mask 
preserving horizontal flipping (p = 0.5) and lung centric 
rotation (±10° around the anatomical centroid to 
enhance model generalization) [9]. The preprocessing 
and employed model integration workflow is presented 
in Fig. 1: 

 

Fig. 1. Preprocessing Steps 
 

C. Methodology 

This work discusses the operational principles of the 
ViT when it was applied to images. The critical steps of 
the ViT's operation are outlined, including input 
encoding, positional encoding, self-attention 
mechanism, ViT encoder, classification component, 
and training and fine tuning operations on 
preprocessed X-ray images. The incorporation of the 
suggested diagnostic system is a crucial aspect. Fig. 2 
illustrates the framework of the proposed COV-TViT 
Diagnostic System, which utilizes the employed 
dataset for training. The framework consists of many 
steps: preparatory processing, dataset partitioning, 
applying transfer learning techniques utilizing the VGG-
16 model, and integrating the ViT structure. 
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D. Convolution Neural Network   

CNN extracts high level features from the input 
image using convolution operation. A CNN can extract 
shift invariant feature maps by applying the shared 
weight architecture of filters or convolution kernels [23]. 
A CNN is a distinct neural network that incorporates 
convolution operations inside one or more hidden 
layers. These convolution operations produce a feature 
map from the input matrix of the respective layer, which 
then serves as the input for the subsequent layer. Eq. 
(2) presented the CNN concept [26, 27]. Pooling layers 
are often included next to convolution layers to 
decrease the dimensionality of the data. Additionally, 
fully linked layers, analogous to conventional multilayer 
perceptrons, are commonly formed [9]. 

   𝑆(𝑖, 𝑗) = (𝐼 ∗  𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝑁−1
𝑛=0

𝑀−1
𝑚=0  ⋅ 𝐾(𝑚, 𝑛)  (2) 

where, S(i,j): output feature map at position (i,j), I(i,j): 

input pixel value at position (i,j), K(m,n): filter/kernel 

weight at position (m,n). 

E. VGG16 and VGG19 

The VGG16 and VGG19 models are renowned for their 
straightforward and uniform architecture. VGG16 and 
VGG19 consist of 16 and 19 convolutional layers that 
use tiny 3x3 filters and pooling layers, respectively, 
followed by three fully connected layers, with VGG19 
extending VGG16’s architecture via additional 
convolutional blocks. Owing to their stable performance 

and standardized design, both were widely adopted as 
benchmark CNN models presented through Eq. (3) [13, 
25].  

𝑋(𝑙) = 𝑓(𝐶𝑜𝑛𝑣(𝑋(𝑙−1) , 𝑊(𝑙)) + 𝑏(𝑙))           (3) 

For each convolutional layer l, given input feature 
map X(l−1), filter weights W(l), biases b(l), the layer output 

is 𝑋(𝑙). 

These models demonstrated strong efficacy in 
several COVID pneumonitis X-ray classification tasks 
and yielded promising accuracy results. Nevertheless, 
the VGG16 and VGG19 models unveiled several 
parameters, resulting in a significant computing 
burden. 

F. Transfer Learning 

Transfer learning is a strategic approach that aims to 
overcome the constraints of current CNN designs by 
using pre-trained models and adapting them to novel 
but interconnected tasks. The process entails using 
early layers to extract features and fine tuning the top 
fully linked layers presented through Eq. (4) [8]. This 
equation provides a foundation for adapting a pre-
trained CNN to a new task by adjusting the input data 
and reusing the learned mapping for prediction. 

            𝑓𝑖𝑛𝑡: = 𝑓𝑆
∗ ∘ 𝑇𝑋 ∈ {𝑓𝑖𝑛𝑡 ∣ 𝑓𝑖𝑛𝑡: 𝑋𝑇 → 𝑌𝑆}              (4) 

where, 𝑓𝑆
∗ is the pre-trained model, TX is the input 

transport mapping function that transforms inputs from 

 
Fig. 2. The COV-TViT Diagnostic System Framework 
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the target domain input space XT to the source domain 
input space XS. XT is the input space of the target 
domain. YS is the output/label space of the source 
domain corresponding to 𝑓𝑆

∗, fint is the composed 

intermediate function, created by applying the input 
transport mapping TX followed by the pretrained model. 

This technique's use of preexisting models allows 
for transferring features, representations, and weights 
from one job to another. This process may accelerate 
the training process and improve accuracy, especially 
in scenarios where training data is scarce. 
Nevertheless, the method's efficacy relies on the 
degree of similarity between the original and desired 
tasks, since substantial differences in domain tend to 
result in subpar performance. The meticulous 
adjustment of hyper-parameters is crucial to mitigate 
the risk of overfitting, while carefully selecting a suitable 
pre-trained model is pivotal in attaining the intended 
outputs [20, 26]. The approach included using an 
established methodology to address the challenges 
posed by the COVID-19 pandemic. Transfer learning 
must use large datasets, including millions of data 
points, for practical training. The implementation 
improved operational efficiency and greater resource 
allocation while training new models. Transfer learning 
proves to be of great use in datasets with insufficient 
labeling [7, 18]. Using pre-trained weights and acquired 
features from the COVID-QU-Ex dataset substantially 
improves the model's performance. 

Two cases were used to show how VGG16 can be 
used with transfer learning. In the first case, the VGG16 
model's original upper layers were kept, and the 
weights that had already been trained on a different 
task were left alone [28]. In the second case, new 
layers were added on top of the original highest levels 
of the VGG16 model. There were three tightly linked 

layers in the model design. They were 256, 256, and 
128, respectively. A softmax activation function and two 
units for binary classification came after these layers. 
The training focused only on updating the output layer 
weights, enabling the VGG16 model to refine its 
acquired features. A demonstration was carried out 
using the VGG16 model presented to better 
understand the use of CNN architectures based on 
transfer learning (refer to Fig. 3). The training 
procedure consisted of training each model for 50 and 
100 epochs, with a batch size of 64.  

In this investigation, the loss function was binary 
cross entropy. The Adam optimizer, alongside a 
learning rate of 0.002, was utilized. A total                                    
of eight models were trained using this approach. Using 
the Adam optimizer enhances the likelihood of reducing 
the error rate to its maximum extent. The primary 
function of the loss of binary cross entropy throughout 
learning is to compute and reduce errors. Table 1 
displays the hyper-parameters used in the research. 

 
Table 1. Hyper-Parameters 

Hyper-parameter Instance 

Optimizer Adam 

Learning Rate 0.002 

Loss Function Binary Cross Entropy 

Batch Size 64 

Epochs 50 and 100 

 
G. Transfer Learning Configuration 

In our transfer learning setup, VGG16 and VGG19 
backbones pre-trained on ImageNet were adapted to 
the COVID-QU-Ex dataset by freezing the first three 
convolutional blocks (10 layers in VGG16; 12 in 
VGG19), which preserves generic edge/texture filters 
and reduces trainable parameters by ≈ 80% (≈ 1.1 M 

 
Fig. 3. Transfer Learning with VGG-16 
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parameters remain trainable). We fine-tuned blocks 4-
5 and appended a classification head of three dense 
layers (256→256→128 units, ReLU) with batch 
normalization, followed by a 2 unit softmax. Training 
used an 80/20 train/validation split, Adam with a 
learning rate of 0.002 (warm up over 5 epochs, 
decayed by 0.1 at epochs 20 and 40), L2 weight decay 
(1 × 10⁻⁴), and gradient norm clipping (1.0). We ran 

50/100 epochs (batch = 64) with binary cross entropy, 
dropout (p = 0.5) in the head, early stopping (patience 
= 10), and on the fly augmentations (±15° rotations, 
flips, ±10% shifts, and brightness jitter). By freezing low 
level filters and selectively fine tuning higher layers 
under these regularization and optimization schemes, 
our model attains fast convergence, strong 
generalization on limited data, and sensitivity to subtle 
COVID related opacities without the instability of full 
network retraining. 

H. Vision Transformer 

CNN architectures, such as VGG16, have traditionally 
been widely adopted in numerous machine vision 
applications. However, a recently emerged contender, 
the ViT, has garnered considerable interest and 
recognition. The ViT paradigm recommends a novel 
approach for classifying COVID images. It does this by 
substituting the conventional convolutional layers with 
self-attention mechanisms that draw inspiration from 
the architecture of the transformer. Initially created for 
natural language processing (NLP) applications, the 
Transformer architecture is the basis for this method 
[14, 29]. The discussed paradigm change has many 
benefits compared to CNN architectures such as 
VGG16. These advantages mostly pertain to scalability 
and transfer learning capabilities in images. Scalability 
is one of the ViT's key features. Traditional CNNs, such 
as VGG16, frequently require more intricate and 
complicated architectures to increase effectiveness, 
which may be computationally costly and challenging 
to train. ViT, on the other hand, can handle both small 
and large scale image datasets effectively by altering 
the number of attention heads and layers, making it a 
flexible solution [30, 31]. Transfer learning has 
emerged as a critical component, enabling models 
learned on massive data sets to be fine-tuned for 
particular applications. ViTs perform well in transfer 
learning settings because they can use pre-trained 
weights from ImageNet for adjusting to new tasks with 
less input. This versatility is beneficial where labeled 
medical image resources are often scarce. The ViT's 
function on X-ray images is illustrated through Fig. 4. 
The functioning of the ViT on X-ray images 
encompasses many vital stages, including input 
encoding, positional encoding, self-attention 
mechanism, ViT encoder, classification component, 
and training and fine-tuning processes [32]. 

 
Fig. 4. The ViT's function on X-Ray Images 

 
The following is an overview of what each one entails: 
1. Input Encoding 

The first step involves taking the input X-ray image and 
partitioning it into smaller patches that do not overlap. 
The patches were then subjected to a linear 
transformation to generate embeddings, each 
functioning as a single token. 

2. Positional Embedding 
In contrast to CNNs, the ViT approach does not 
possess the intrinsic ability to capture spatial 
information often present in convolutional layers. To 
address this constraint, positional encodings were 
included in the patch embeddings. As mentioned 
earlier, the concerns provided valuable insights into the 
relative placements of patches, enabling the approach 
to effectively capture and comprehend spatial 
connections within the image [11, 31]. 
3. Self-Attention Mechanism 
The core feature of the ViT is its self-attention 
mechanism, which facilitates the acquisition of 
extensive interdependencies across patches. Every 
patch in the system actively interacts with all other 
patches, acquiring knowledge about contextual 
connections. The self-attention mechanism can be 
iteratively applied in numerous layers, enabling the 
model to capture more intricate and abstract aspects 
effectively. The first step involves the conversion of the 
image provided into an embedding vector via the 
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embedding process. Subsequently, the acquired 
embedding vectors were utilized as inputs, referred to 
explicitly as Queries (Q), Keys (K), and Values (V), 
within the mechanism for self-attention via a sequence 
of operations involving multiplication. Eq. (5) [11, 14] 
performs the mathematical calculation of the self-
attention layer's output, which is then provided as input 
to the subsequent fully connected layer. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉        (5) 

where, 𝑑𝑘 = dim (𝑘) 

4. Encoder 
The ViT encoder is composed of many vital 
components, including normalization (Norm), a multi 
head attention (MHA) block, dropout, and multi-layer 
perceptron (MLP) component. The MLP block was 
employed as a classification component. The essential 
element in this architecture is the multi head attention 
layer, which operates using a parallel attention method. 
Initially, the input token matrix undergoes normalization 
using the normalization layer. Next, three matrices, Q, 
K, and V, were derived by performing matrix 
multiplication on WQand WK, equivalent to the self-
attention module. Thirdly, Q, K, and V were partitioned 
into a matrix with dimensions equal to the number of 
heads (h) multiplied by the respective Wi

Q, Wi
K, and Wi

V 
multiples. The Qi, Ki, and Vi matrix associated with 
each head is subsequently utilized to calculate the 
related attention score using Eq. (6) [30, 31]. 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 ∗  Wi
Q, 𝐾 ∗ Wi

K, 𝑉 ∗ Wi
V)     (6) 

The MHA layer produces its final result by combining 
the outputs of all heads and performing a matrix like 
complete conjunction, as outlined in Eq. (7) [31]: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝑀𝑒𝑟𝑔𝑒(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑖)   (7) 

One may incorporate a residual connection both before 
and after the MHA and MLP layers to reach the ViT 
encoder's outputs. Usually, repeatedly and 
successively stacking a number transformer’s 
encoders forms the encoder layer of the whole model 
[30, 31]. 
5. Classification component 
After applying self-attention layers to the images, a 
classification component is included in the resulting 
embedding. The classification component uses the 
learned features to generate class probabilities. The 
primary purpose of the classification component, which 
is implemented via the MLP head, is to extract complex 
data and provide the final classification result, as 
previously stated [31, 33]. 
6. Training and Fine Tuning 
Using the COVID-QU-Ex dataset, the ViT model can 
undergo training either from scratch or via fine tuning. 
Using pre-trained weights derived from extensive 
datasets may significantly expedite the convergence 
process in activity [34, 35]. 
 

I. Vision Transformer Adaptation 

We reshaped ViT’s final 7×7×512 feature map into N = 
49 non overlapping patches (1×1×512 each). Each 
patch was flattened and projected to a d = 256-
dimensional embedding via a learnable linear layer, 
then summed with a 256 dimensional positional 
encoding. We prepend a learnable class token and 
feed the sequence into an 8-layer transformer encoder, 
each block comprising: 
1. Multi head self-attention with H = 8 heads (head size 

= 32) and dropout p = 0.1 

2. An MLP with expansion ratio = 4 (hidden size = 

1024), ReLU activation, and dropout p = 0.1 

3. Pre and post layer normalization and residual 

connections. 

To mitigate overfitting on our modest COVID-QU-Ex 
CXR dataset and leverage existing visual knowledge, 
we initialize VGG16 and VGG19 with ImageNet pre-
trained weights and freeze the early convolutional 
blocks. This preserves generic edge and texture 
detectors while dramatically reducing the number of 
trainable parameters. We then fine-tuned only the 
deeper convolutional layers and classification head on 
COVID related X-ray features, enabling the network to 
learn disease specific patterns without overfitting to the 
limited data. The fine-tuned VGG feature maps were 
partitioned into non overlapping patches, each 
projected into a calculated D-dimensional embedding 
enriched with positional encodings. These embeddings 
feed into a stack of ViT blocks, whose multi head self-
attention mechanism captures long-range spatial 
dependencies across the entire lung field. This 
capability is critical for identifying diffuse or bilateral 
pneumonic opacities, which are often missed by the 
local receptive fields in standalone CNNs. Layer 
normalization, dropout, and data augmentation further 
enhance generalization. By decoupling local feature 
extraction (VGG transfer learning) from global context 
modeling (ViT self-attention), COV-TViT combines 
data efficiency and robust texture encoding with 
powerful long-range reasoning. This hybrid approach 
outperforms pure CNN or pure transformer models, 
particularly when training data are scarce. 

J. Proposed Algorithm 

The proposed COV-TViT algorithm presented through 
Algorithm 1 performs a comparative evaluation of ViT 
against VGG16 and VGG19. The process began by 
loading the COVID-QU-Ex dataset and splitting it into 
training and testing sets. Each image underwent 
preprocessing steps, including contrast enhancement 
via CLAHE, normalization, and resizing to 224×224 
pixels, followed by augmentation (random flips and 
rotations) applied only to training images. The VGG 
models are adapted by leveraging ImageNet pre-
trained weights, freezing convolutional layers for 
feature extraction, and replacing the fully connected 
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classifier with a SoftMax output for binary classification. 
For ViT, input images are divided into 16×16 patches, 
embedded with positional encodings, and passed 
through 12 transformer encoder layers utilizing multi-
head self-attention and MLP blocks, culminating in a 
classification head. Finally, the trained models are 
evaluated on unseen CXR samples, and performance 
metrics are compared to assess the effectiveness of 
ViT relative to the VGG architectures in detecting 
COVID-19 cases. The Algorithm 1 is as follows: 
 

Algorithm 1. COV-TViT Algorithm 

(1) Input D = {(I₁, y₁), (I₂, y₂), ..., (In, yₙ)} // Load COVID-  
                                                         QU-Ex Dataset 
where Iᵢ ∈ CXR images, yᵢ ∈ {Normal, COVID} 

(2) Split D into Dtrain = 80% and Dtest = 20% 

(3) For each (Iᵢ, yᵢ) in D do: // Initialize Pre-processing 
(4)      CLAHE ← (clipLimit = 2.0, tileGridSize = (8,8)) 

                                             // Applied Parameters 
(5)        𝐼𝐶𝐿𝐴𝐻𝐸  ← Apply CLAHE to Iᵢ  //Contrast Adjust 

(6) 
(7) 
(8) 

      μ ← Mean( 𝐼𝐶𝐿𝐴𝐻𝐸) 
   σ ← Standard Deviation( 𝐼𝐶𝐿𝐴𝐻𝐸) + ε 
   𝐼𝑁𝑜𝑟𝑚 ←  ( 𝐼𝐶𝐿𝐴𝐻𝐸 − μ) / σ          // Normalization 

(9)       𝐼𝑅𝑒𝑠𝑖𝑧𝑒 ← ResizeTransform(𝐼𝑁𝑜𝑟𝑚) 
      ResizeTransform ← (224, 224)   // Resizing 

(10)       If phase == "training" then: 

(11)              𝐼𝐴𝑢𝑔 ← Dtrain (𝐼𝑅𝑒𝑠𝑖𝑧𝑒) 

          {HorizontalFlip (p = 0.5), Rotation (θ∼   

          U(−10°,10°))}   // Augmentation Parameters 
(12) 
(13) 

          Else if phase == "Testing" then: 
          No augmentation for Dtest 

(14)       End If 

(15) End For 

(16) For each model in {VGG16, VGG19, ViT} do: 

 
(17) 
(18) 
(19) 
(20) 

     VGG16 and VGG19 Model:  
     Load pre-trained model with ImageNet weights          
     Freeze convolutional layers //feature extraction 
     Remove the last three fully connected layers 
     Last layer with 2 outputs          // SoftMax 

 
(21) 
(22) 
(23) 

 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 

     ViT: 
     Input processed Images as 16×16 patches   
     (224/16) × (224/16) = 14×14 patches  
     Positional Embedding with embeddim = 768 
     Transformer Encoder Layers: 
   Initialize L = 12 identical layers 
        For layer ℓ = 1 to L do: 
                 Multi Head Self-Attention 
                Layer Normalization 
               Multi-Layer Perceptron                
           End For 
      Classification Head    
      Output probabilities 

(32) End For 

 
(33) 
(34) 

For each test sample (x_test, y_test) in Dtest do: 
 𝑦̂  = 𝑎𝑟𝑔𝑚𝑎𝑥{𝜖 [𝑁𝑜𝑟𝑚𝑎𝑙,𝐶𝑂𝑉𝐼𝐷]} 𝑓𝑚𝑜𝑑𝑒𝑙  (𝑥)  // Testing 

Evaluate Performance matrices for ViT vs. VGGs 
 

(35) 
Prediction: For new CXR image 𝐼𝑁𝑒𝑤. 

𝑦̂, 𝑝 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑚𝑜𝑑𝑒𝑙  (𝑥𝑁𝑒𝑤)) 

K. Performance Metrics 

Assessing the overall effectiveness and efficiency of a 
built model is essential for determining its reliability and 
capacity to make accurate forecasts. This evaluation 
involves employing performance measures [32, 33]. 
These metrics, whether quantitative or qualitative, 
assess several areas of performance, usually tracking 
the enhancement and advancement over a period of 
time [34, 35]. The model's performance was evaluated 
using several key metrics, including accuracy Eq. (8) 
[36], sensitivity Eq. (9) [37], precision Eq. (10) [38], 
specificity Eq. (11) [39], and F1 score Eq. (12) [40, 41]. 
These metrics are presented in Table 2. 

Table 2. Performance Metrics 

Metric Equation No. 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
   (8) 

Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
              (9) 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
       (10) 

Specificity 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
         (11) 

F1 Score 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (12) 

 

IV. Results  
A. Dataset 

The study employed the COVID-QU-Ex dataset within 
two classes of COVID-19 and normal classes that were 
partitioned into two subsets, with 80% assigned for 
training and the remaining 20% put aside for testing to 
assess performance. Table 3 presents the employed 
COVID-QU-Ex dataset with the X-ray instances. 

 

Table 3. Employed COVID-QU-Ex Instances 

Class Total 
Images 

Training 
Set 

Testing 
Set 

COVID-19 11,956 9,565 2,391 

Normal 10,701 8,561 2,140 

Total 22,657 18,126 4,531 

B. Preprocessing 

Preprocessing techniques outlined in the methodology 
were effectively implemented on COVID-QU-Ex X-ray 
instances. CLAHE enhanced intrapulmonary contrast 
without amplifying noise. Resizing and normalization 
ensured scale-consistent features, while input 
construction enriched both spatial and diagnostic 
representations. Augmentation strategies such as 
flipping and lung centric rotation further enhanced 
generalization. These steps collectively contributed to 
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improved model accuracy and clinically interpretable 
attention mapping. 

C. Transfer learning with VGG16 and VGG19 

Transfer learning is often used in the context of the 
ImageNet dataset while already trained VGG16 and 
VGG19 models are applied. A novel, distinct pipeline 
was developed to diagnose the data that had been 
provided. Within the pipeline, eight divergent models 
were generated for the assigned task. Table 4 displays 
the configuration of various models. 
 

Table 4. Configuration of 8 Divergent Models 

Model# 

D
e

n
s

e
-1

 

D
e

n
s

e
-2

 

D
e

n
s

e
-3

 

Parameters 
(Trainable) 

I 512 256 256 2,23,07,354 

II 256 128 128 6,77,154 

III 128 64 64 2,41,271 

IV 64 32 32 91,742 

V 512 256 NO 11,02,234 

VI 256 128 NO 4,00,501 

VII 128 64 NO 1,75,531 

 
The intent is to reduce the number of parameters 

that can be trained while preserving effectiveness. The 
process of extracting the feature maps from the layer 
of convolution operation involves training several 
models that consist of distinct dense layers. This 
approach aims to enhance performance while 
minimizing the number of learnable parameters. The 
photos were initially downsized to dimensions of 
224×224, and after that, a one hot encoding scheme 
was used to encode the labels. Next, feature maps 
were obtained using the preexisting VGG16 and 
VGG19 networks for the training and testing datasets. 
The dimensions of the input forms for the feature maps 
were specified as (224, 224, 3), and the uppermost 
layers were omitted from the analysis. The size of the 
outputs was (7, 7, 512). The models underwent training 
for 50 and 100 epochs, maintaining a constant batch 
size of 64.  

Eight models were trained using an Adam optimizer 
and a binary cross entropy loss function, with a learning 
rate of 0.002. The used model has dense layers that 
apply the rectified linear unit (ReLU) activation function. 
An output dense layer of two units follows it and 
employs the SoftMax activation function. In the next 
stage, adjustments were made to the class weighting 
process to tackle the problem of imbalanced datasets. 
In addition, a gradient clipping threshold of 0.5 was 
included to address the issue of bursting gradients. 

Table 5 and Table 6 display the classification report for 
transfer learning with VGG16 and VGG19. 

 
Table 5. VGG16 Outcomes 
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I 
50 96.21 96.64 79.12 43.82 56.41 

100 97.80 99.73 74.00 88.26 80.64 

II 
50 93.80 94.19 81.00 33.03 46.11 

100 95.94 97.08 88.00 42.71 57.51 

III 
50 94.24 95.29 61.00 30.00 40.21 

100 96.54 97.34 77.00 49.67 60.36 

IV 
50 96.61 96.92 88.00 49.04 63.07 

100 96.85 97.76 67.00 52.34 58.75 

V 
50 97.41 99.71 78.00 56.91 65.81 

100 97.91 99.53 86.00 86.78 86.46 

VI 
50 96.34 96.18 75.00 73.52 74.26 

100 95.76 97.34 78.00 75.72 76.81 

VII 
50 97.09 97.21 75.00 68.70 71.69 

100 96.85 97.27 77.00 49.41 60.29 

VIII 
50 96.94 96.87 75.00 66.04 70.38 

100 97.14 97.81 81.00 69.01 74.59 

 
Table 6. VGG19 Outcomes 
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I 
50 97.54 99.96 25.00 96.15 39.69 

100 97.87 99.96 38.00 90.47 53.53 

II 
50 97.64 99.90 30.00 90.90 45.12 

100 98.00 99.96 48.00 82.75 60.76 

III 
50 96.83 99.46 18.00 52.94 26.87 

100 98.12 99.73 50.00 86.20 63.29 

IV 
50 97.25 99.56 28.00 68.29 39.72 

100 97.64 99.80 33.00 84.61 47.49 

V 
50 97.51 99.80 28.99 82.85 42.95 

100 98.35 99.96 53.00 99.98 69.28 

VI 
50 97.83 99.73 41.00 83.67 55.04 

100 97.83 99.46 45.00 78.94 57.33 

VII 
50 97.38 99.70 28.00 75.67 40.83 

100 98.29 99.96 50.00 95.34 64.43 

VIII 
50 97.09 99.60 16.00 72.72 26.23 

100 97.70 99.400 47.00 72.30 56.97 
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A detailed analysis comparing the transfer learning 
results of VGG16 and VGG19 yielded the following 
insights. Analysis of Table 5 and Table 6 yields the 
following key observations: 
1. The superiority of the V model, which employed the 

VGG16 architecture, is visible. The model attained 

an F1 score of 86.46% and an accuracy of 97.91% 

after undergoing 100 epochs. 

2. The transfer learning framework incorporates the 

use of VGG16. The Model-I demonstrated 

outstanding performance, thus establishing itself as 

the most successful model. The initial model 

exhibited an accuracy rate of 97.80% but had a 

lower F1 score. This discrepancy may be deceiving 

since it suggests a high level of reliability. 

3. The utilization of two dense layers, as opposed to 

three, yields improved performance despite 

diminishing the trainable parameters. 

4. Reducing the number of trainable parameters did 

not significantly compromise model performance. 

5. Models trained for 100 epochs consistently 

outperformed those trained for 50 epochs. 

6. VGG16 demonstrated superior feature extraction 

capabilities compared to VGG19 for the given 

dataset. 

7. Utilizing two dense layers instead of three resulted 

in better performance, even with fewer trainable 

parameters. 

8. Overall, VGG16 outperformed VGG19 in 

classification performance across evaluated 

metrics. 

D. ViT Outcomes 

The classification report offers a thorough overview of 
the performance of the ViT model on the test dataset. 
The classification report, presented in Table 7, provides 
essential metrics such as precision, recall, F1 score, 
and support for each class predicted by the ViT model.  
 

Table 7. ViT’s Outcomes 
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ViT 
50 98.21 99.02 86.32 96.43 90.12 

100 98.96 99.81 98.11 97.26 96.21 

 
These indicators enable a comprehensive 

assessment of the model's capacity to accurately 
identify. Examining the classification report is a crucial 
stage in comprehending the capabilities and limitations 
of the ViT model. It can provide guidance for enhancing 
and optimizing the model further. Fig. 5 displays the 

empirical findings derived from the examination of the 
ViT model. The graphic illustrates the ongoing 
evaluation of the model's accuracy and loss metrics 
during the training and validation phases. The learning 
curves presented offer useful insights into the 
convergence behavior of the model and its capacity to 
generalize from the training data to unseen validation 
samples. 

 
Fig. 5. The ViT outcomes (Accuracy and Loss) 

Examining these performance indicators 
throughout the training period enables us to evaluate 
the learning dynamics of the ViT model and identify the 
most effective hyperparameter configurations for 
achieving the necessary generalization abilities at 100 
epochs. 

E. Confusion Matrix 

Fig. 6 presents a confusion matrix illustrating the 
performance of the ViT model in classifying COVID and 
normal cases, effectively capturing both correct and 
incorrect predictions across diagnostic categories. 

 Predicted COVID Predicted Normal 

Actual COVID 2,346 45 

Actual Normal 04 2,136 

Fig. 6. ViT’s Confusion Matrix On Test Set 

 

V. Discussion 
A. Error Analysis  

The confusion matrix (Fig. 6) reveals a striking 
asymmetry in misclassification: 45 false negatives 
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(1.89% of COVID cases) versus only 4 false positives 
(0.19% of normal cases), yielding an FN/FP ratio of 
11:1. This pronounced imbalance offers compelling 
insight into the model’s conservative bias, with potential 
clinical implications due to the elevated risk of missed 
COVID-19 diagnoses. The model excels in detecting 
severe COVID-19 cases (98.1% accuracy for clear 
radiographic signs like consolidation) and correctly 
ruling out healthy patients. FNs predominantly occur in 
early stage infections with subtle features (e.g., faint 
GGOs), while FPs arise from non COVID pneumonias 
mimicking COVID patterns. These errors expose 
vulnerability to diagnostically ambiguous cases. Given 
the COV-TViT model’s conservative bias and high 
accuracy, its deployment is recommended for triage in 
high prevalence, high resource settings where the cost 
of false positives is clinically manageable. Conversely, 
its use as a standalone screening tool in early 
pandemic or low prevalence scenarios is encouraged, 
as the elevated false negative risk may lead to 
unacceptable diagnostic oversights. 

B. Interpretation 

To assess the model’s reliability across clinically 
relevant subgroups and identify potential biases, we 
conducted stratified analyses on the COVID-QU-Ex 
test set (Table 3). COV-TViT demonstrated consistent 
performance across varying severity levels, achieving 
95.4% accuracy in mild cases and 98.9% in severe 
cases highlighted its sensitivity to disease progression. 
Demographic stratification revealed minimal variation: 
age and gender subgroups showed no statistically 
significant differences in accuracy. Furthermore, 
performance remained stable across data from multiple 
institutions, suggesting negligible site specific bias. 
These findings underscore the model’s robustness and 
fairness across diverse clinical strata, satisfying key 
criteria for real world deployment and reinforcing its 
potential utility in heterogeneous healthcare 
environments. 

The investigation conducted external validation 
using the COVID-19 Radiography Database to assess 
COV-TViT’s generalizability beyond COVID-QU-Ex. As 
anticipated, performance declined markedly across all 
metrics i.e. accuracy (↓12.22%), sensitivity (↓17.46%), 
specificity (↓6.29%), and F1 score (↓19.38%), 
highlighting dataset specific limitations. COVID-QU-Ex 
consistently outperformed due to its preprocessed 
imaging and balanced class distribution. Error analysis 
attributed the drop to domain shift and class imbalance 
in the external dataset. Mitigation strategies, including 
lightweight fine-tuning and input standardization, 
substantially improved performance, underscoring the 
need for site specific calibration and continuous 
monitoring in real world deployment. 

The potential impact of class imbalance was 
assessed across the applied datasets. Although the 

datasets were approximately balanced, minor 
variations were observed among diagnostic categories. 
The model consistently achieved high sensitivity in 
identifying positive cases and maintained strong 
specificity for negative cases, thereby ensuring 
balanced and clinically reliable performance.The 
outcomes of this investigation reinforce the 
transformative capacity of ViTs in ML, particularly for 
feature extraction in COVID-19 pneumonia detection 
via X-rays. ViT exhibited greater adaptability to 
extended training epochs, with a notable 0.75% 
accuracy improvement compared to the marginal 
0.11% gain observed in VGG16 over the same training 
duration. This increased sensitivity to prolonged 
training suggests that ViT architectures benefit more 
substantially from deeper learning cycles than their 
CNN counterparts. Moreover, training performance 
was stabilized through the implementation of a fixed 
batch size of 64, which successfully balanced memory 
consumption and gradient stability, an essential 
requirement for high dimensional input processing. 

Across all models examined, the Adam optimizer 
consistently facilitated convergence, underscoring its 
efficacy as a robust optimization strategy. Furthermore, 
architectural tuning, particularly the use of shallower 
classification heads, proved beneficial for VGG16 and 
VGG19. This adjustment enhanced their output despite 
a reduction in learnable parameters. This observation 
highlights the importance of strategic architectural 
refinement, even within mature CNN frameworks. 

ViT ultimately outperformed CNN based models by 
more than 1% in detecting accuracy, a margin 
attributed to their superior capacity for modeling long 
range dependencies and feature hierarchies within 
image data. This advantage extended into training 
dynamics, where ViT models demonstrated heightened 
responsiveness to longer training schedules compared 
to conventional transfer learning techniques, indicating 
their scalability and potential for deeper data 
integration. The optimized ViT configuration achieved a 
state of the art accuracy of 98.96%, setting a new 
benchmark for automated COVID-19 detection from 
radiographic imagery and solidifying ViT’s role as a 
paradigm shifting advancement in the domain. 

Additionally, the implemented preprocessing 
pipeline delivered significant diagnostic accuracy 
gains, as quantified in Table 8.  

 
Table 8. Preprocessing ablation study (ViT model) 

Processing Stage 
Accuracy 

(%) 
F1 Score 

(%) 

Baseline (resizing 
only) 

96.21 87.33 

+ CLAHE 98.48 92.91 

+ Standard Scaling 98.96 96.21 
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The analyzed outcomes highlight the effectiveness 
of the preprocessing pipeline: anatomical isolation 
reduced false positives by 22%, and CLAHE 
enhancement improved early detection sensitivity by 
4.14%. In transfer learning, eight distinct models were 
developed by systematically modifying dense layer 
configurations while maintaining the VGG16 
convolutional base.  

All models used Adam optimization (LR=0.002), 
binary cross entropy loss, and class weighting to 
address data imbalance. The evaluation of multiple 
architectural configurations revealed that Model V, 
comprising two densely connected layers, delivered the 
most balanced and effective performance. It achieved 
a high accuracy of 97.91% and an F1 score of 86.46% 
at 100 epochs, despite possessing a comparatively 
modest parameter count. This finding emphasizes the 
value of architectural parsimony, demonstrating that an 
optimally tuned lightweight model can outperform more 
complex counterparts when guided by appropriate 
training strategies. In contrast, three layered variants 
like Model I, while achieving similar accuracy levels 
(97.80%), showed lower F1 scores, indicating reduced 
precision recall harmony and suggesting over 
parameterization. The presence of additional layers 
likely introduced redundancy without contributing 
substantively to discriminative learning, thereby 
compromising generalization. Furthermore, the 
incorporation of gradient clipping with a threshold of 0.5 
proved instrumental in preventing exploding gradients 
during backpropagation. This stabilization technique 
contributed to more consistent convergence, especially 
in deeper architectures, emphasizing the importance of 
tailored regularization strategies for maintaining 
gradient flow in neural network training. 

ViT performance was evaluated across critical 
training hyperparameters with identical preprocessing 
(224×224 resizing, one hot encoding). Extended 
training substantially enhanced model performance, 
resulting in a 0.75% increase in accuracy and a 1.09% 
improvement in F1 score. These gains underscore the 
model's capacity to benefit from longer learning cycles, 
enabling more refined feature extraction and 
generalization. Additionally, the training dynamics, as 
illustrated in Fig. 5, revealed stable convergence 
behavior, with minimal fluctuations in validation loss. 
This indicates not only the reliability of the training 
regimen but also the robustness of the model 
architecture in sustaining consistent performance 
across iterations. 

C. Model Interpretability and Visual Explanations:  

Grad-CAM was applied to the final convolutional layer 
of the trained model, generating class specific 
activation maps that were then up sampled and 
overlaid on the original X-ray images using a jet color 
map for visualization. 

Fig. 7 illustrates two representatives of COVID-19 
positive chest X-rays alongside their Grad-CAM 
visualizations. The first row exhibits bilateral COVID-
19, and the model’s attention map highlights regions of 
increased opacity consistent with typical COVID-19 
pathology. The second row presents GGOs and 
consolidation, with Grad-CAM activation intensifying 
over areas of reduced transparency and structural 
distortion. These visual explanations confirm the 
model’s ability to localize clinically relevant features, 
reinforcing its interpretability and diagnostic alignment. 
This interpretability analysis not only validates the 
clinical relevance of our approach but also provides an 
understanding of and trust in the model's predictions. 

 

  
(a)  (b) 

 

  
(c) (d) 

 

Fig. 7. COVID-19 Instances with Grad-CAM Output, 
(a) X-ray Instance-1, (b) X-ray Instance-2, (c) Grad-
CAM Output of Instance-1, (d) Grad-CAM Output of 
Instance-2 

 

D. Comparative Analysis 

Table 9 presents a detailed comparison of the 
proposed COV-TViT methodology with other relevant 
studies. This comparison analysis offers critical 
perspectives on the performance and characteristics of 
the COV-TViT approach in relation to other advanced 
techniques documented in the literature. Table 9 
presents a concise comparative analysis of model 
complexity and computational efficiency, thereby 
facilitating an objective evaluation of the advantages 
and limitations of the COV-TViT methodology. This 
comparative analysis is a crucial reference point for 
placing the COV-TViT technique in the larger context 
of research on detecting and classifying COVID. 
Following an examination of Table 5 and Table 6, it is 
possible to draw the conclusion that the ViT attained an 
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F1 score of 96.21%, accuracy of 98.96%, and 
specificity of 99.81% throughout its performance. 
These scores represent the maximum performance 
seen throughout all conducted experiments. The ViT 
demonstrated notable efficacy, suggesting the 
effectiveness of the COV-TViT diagnostic system in 
discerning positive and negative instances. 
 

Table 9. Comparative Analysis 

Reference Model  
Accuracy 

(%) 

[14] ViT 97.84 

[18] Xception 89.60 

[20] VGG19 89.30 

[26] Densenet + ResNet 94.00 

[28] Densenet201 + MLP 95.64 

[31] ViT 98.00 

COV-TViT 
Transfer Learning with  

VGG16, VGG19 & ViT 
98.96 

 
The proposed ViT based diagnostic system 

demonstrated superior performance in COVID 
detection tasks compared to several baseline and 
hybrid models. Specifically, ViT outperformed the 
widely adopted VGG16 architecture by 1.05% in 
accuracy and 4.75% in F1 score, indicating a more 
robust classification capability. Furthermore, the 
proposed ViT framework achieved an improvement of 
0.96% to 1.12% in accuracy when benchmarked 
against standard implementations reported in prior 
studies [14], [28], The proposed ViT framework 
achieved an improvement of 0.96% to 1.12% in 
accuracy, suggesting enhanced generalization on 
chest X-ray datasets. Hybrid models that combined 
convolutional and transformer components, such as 
those referenced in [24] and [26], underperformed in 
comparison to the standalone ViT. An observed drop in 
accuracy ranging from 3.96% to 4.92% was noted. 
These results highlight the efficacy of pure transformer 
based architectures in medical image analysis, 
particularly in scenarios with limited yet high 
dimensional data. In the VGG16 models, adding more 
parameters didn’t improve results, which suggests that 
the deeper layers were learning repetitive or 
unnecessary features. In contrast, the ViT used 
attention mechanisms to focus on the most important 
COVID patterns, achieving strong performance without 
needing extra layers or complexity. 

E. Computational Efficiency and Clinical 
Applicability 

To assess the practical deployment of COV-TViT in 
clinical settings, we evaluated its computational 
efficiency in terms of inference time, memory usage, 
and throughput. The system achieved an average 

inference time of 95 ms per X-ray image on standard 
GPU hardware (experiments were run on Ubuntu 20.04 
LTS with Python 3.8 and PyTorch, using an NVIDIA 
RTX 4080 GPU (12 GB VRAM) and an 8 core Intel 
Core i7 CPU) and 180–220 ms on CPU only setups, 
supporting both real time diagnosis and non-
emergency screening workflows. Component wise 
analysis indicates that the hybrid architecture 
combining VGG based transfer learning and ViT 
modules offers notable efficiency gains, with respective 
processing times of 45 to 70 ms and 25 to 35 ms. 

Batch processing enables throughput of up to 40 X 
rays per minute, maintaining consistent performance 
across varied image resolutions and quality levels. 
Additionally, memory efficient attention mechanisms 
reduce peak memory usage by ~30% compared to 
standard ViT implementations, facilitating deployment 
on mid-range clinical workstations without 
compromising diagnostic accuracy. These findings 
confirm that COV-TViT satisfies both computational 
and operational requirements for scalable, real world 
COVID-19 diagnostic applications. 

F. Clinical Integration Pathway 

To facilitate the translational deployment of COV-TViT, 
we proposed a structured clinical integration pathway 
encompassing validation, regulatory approval, and 
implementation. Fig. 8 presents the clinical integration 
pathway flowchart for COV-TViT system deployment. 

 

 

Fig. 8. Clinical integration pathway flowchart for  

COV-TViT system deployment 

 
First, we will undertake a phased, multi center 
validation, beginning with retrospective assessment of 
chest radiographs from hospitals, stratified by patient 
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demographics, comorbidities, and imaging protocols. 
This will be followed by prospective, real time 
comparison against board certified radiologist 
interpretations and RT-PCR results [4, 12]. Second, 
COV-TViT will pursue regulatory clearance from the 
administration pathway, demonstrating substantial 
equivalence to a legally marketed predicate device, 
and will concurrently apply for labeling under the 
European Union Medical Device Regulation (EU MDR 
2017/745) as a medical device software [42-43]. Third, 
integration via standardized Digital Imaging and 
Communications in Medicine (DICOM) interfaces will 
enable seamless image transfer and automated 
reporting within existing clinical workflows [44]. Fourth, 
following initial pilot studies in tertiary centers, 
deployment will expand to community hospitals and 
emergency departments, with both software or 
application based and on premise implementation 
options [45, 46]. Finally, a comprehensive post market 
surveillance program, aligned with the administrative 
Predetermined Change Control Plan and EU MDR post 
market requirements, will continuously monitor real 
world performance, capture adverse events, detect 
algorithmic drift, and manage safe, controlled updates 
to ensure sustained diagnostic accuracy and patient 
safety. The successful translation of COV-TViT from 
research prototype to clinical practice requires a 
systematic integration pathway encompassing 
validation protocols, regulatory compliance, and 
strategic deployment considerations.  

 

VI. Conclusion  

The research addresses the critical challenge of 
COVID-19 diagnosis in resource-constrained settings 
by proposing COV-TViT, a novel diagnostic framework 
that leverages transfer learning and ViT architecture for 
automated detection of COVID-19 pneumonitis using 
X-rays. The COV-TViT system utilizes transfer learning 
with VGG16 and VGG19, along with ViT featuring self-
attention mechanisms, to enable robust feature 
extraction and accurate classification. The COV-TViT 
framework demonstrated strong diagnostic 
performance, achieving an accuracy of 98.96% and an 
F1 score of 96.21% in detecting COVID-19. These 
results underscore the effectiveness of the COV-TViT 
system in extracting discriminative features and 
delivering reliable classification outcomes. However, 
critical limitations emerged: evaluation restricted to the 
COVID-QU-Ex dataset may reflect demographic and 
institutional biases; computational demands potentially 
limit deployment in resource constrained 
environments; and ViTs' documented struggles with 
high frequency components could impact detection of 
subtle pulmonary manifestations. External validation 
across diverse institutions and patient populations 
remains unestablished. Priority should focus on multi 

institutional validation studies with diverse patient 
populations to assess generalizability and identify 
demographic specific performance variations. Future 
work will explore ensemble architectures to improve 
robustness and mitigate individual model limitations. 
Integrating fairness-aware training and bias mitigation 
strategies will be essential for equitable deployment. 
Efforts will also focus on optimizing computational 
efficiency for low-resource settings and conducting 
cross-institutional evaluations to assess 
generalizability and medical domain adaptation. The 
COV-TViT system represents a significant 
advancement in automated COVID-19 diagnosis, yet 
continued research addressing these limitations 
remains essential for responsible clinical 
implementation. 
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